
Quantifying Life

Dmitry Kondrashov

Table of contents

Preface 9
A brief motivation of mathematical modeling . 9
Purpose of this book . 10
Organization of the book . 11

1 Arithmetic and variables 13
1.1 Blood circulation and mathematical modeling 14

1.1.1 Galen’s theory of blood . 14
1.1.2 Mathematical testing of the theory . 17

1.2 Parameters and variables in models . 17
1.2.1 discrete state variables: genetics . 19
1.2.2 discrete state variables: population . 19
1.2.3 continuous state variables: concentration 20
1.2.4 multiple variables in medicine . 20
1.2.5 Discussion questions . 20

Tutorial 1: First steps for coding 22
Learning goals . 22
R Studio and Quarto . 23

Arithmetic in R . 23
Scientific notation . 24
What can go wrong . 24
Exercises . 25

Assigning variables . 26
Variable names . 26
Displaying variable values . 27
Changing variable values . 27
What can go wrong . 28
Exercises . 29

2 Functions and their graphs 31
2.1 Dimensions of quantities . 31

2.1.1 Exercises . 33
2.2 Functions and their graphs . 34

2.2.1 linear and exponential functions . 34

2

2.2.2 Exercises . 36
2.2.3 rational and logistic functions . 37
2.2.4 Exercises: . 39

2.3 Rates of biochemical reactions . 40
2.3.1 Constant (zeroth-order) kinetics . 41
2.3.2 First-order kinetics . 41
2.3.3 Michaelis-Menten model of enzyme kinetics 41

Tutorial 2: Vectors and plotting 43
Learning goals . 43

Vector variables . 44
Assigning vectors and idexing . 44
subsetting or slicing vectors . 46
using vector variables for calculations . 46
What can go wrong . 47
Exercises . 47

Calculations and plotting with vectors . 49
using plot() . 49
using lines() or points() . 50
adding a legend to a plot . 50
using curve() . 51
What can go wrong . 51
Exercises . 52

3 Describing data sets 55
3.1 Mutations and their rates . 55
3.2 Describing data sets . 57

3.2.1 central value of a data set . 57
3.2.2 Exercises . 58
3.2.3 spread of a data set . 59
3.2.4 Exercises: . 60
3.2.5 describing data sets in graphs . 61
3.2.6 Exercises . 62

Tutorial 3: Data frames and descriptive statistics 65
Learning goals . 65

Working with data frames . 65
loading data from a file . 65
loading data from a package . 66
descriptive statistics . 66
What can go wrong . 68
Exercises . 68

3

Visualizing data sets . 69
Box plots . 70
Exercises . 71

4 Random variables and distributions 72
4.1 Random variables and distributions . 72

4.1.1 definition of probability . 72
4.1.2 axioms of probability . 75
4.1.3 random variables . 77
4.1.4 expectation of random variables . 78
4.1.5 variance of random variables . 80
4.1.6 Exercises . 82

4.2 Examples of distributions . 82
4.2.1 uniform distribution . 82
4.2.2 binomial distribution . 83
4.2.3 Exercises . 88
4.2.4 testing for mutants . 88

Tutorial 4: Random number generators 90
Learning goals . 90

Random number generators . 90
uniform discrete random numbers . 90
binomial random number generator . 91
Exercises . 93

5 Linear regression 95
5.1 Linear relationship between two variables . 95
5.2 Linear least-squares fitting . 96

5.2.1 sum of squared errors . 96
5.2.2 best-fit slope and intercept . 98
5.2.3 Execises . 99
5.2.4 correlation and goodness of fit . 100
5.2.5 Exercises . 102

5.3 Linear regression using R . 103
5.4 Regression to the mean . 105

5.4.1 Discussion questions . 107

Tutorial 5: Linear regression 108
Learning goals . 108
Best-fit parameters . 108
interpreting the output of linear regression . 109
plotting the residuals . 110
Exercises: . 111

4

6 Independence 113
6.1 Contingency tables to summarize data . 113
6.2 Conditional probability . 114

6.2.1 Exercises . 116
6.3 Independence of events . 118

6.3.1 Exercises . 119
6.3.2 product rule . 119

6.4 Independence of variables . 121

7 Hypothesis testing 124
7.1 Terminology and quality measures . 124

7.1.1 positives and negatives . 124
7.1.2 types of errors . 125
7.1.3 test quality measures . 126
7.1.4 Exercises . 127
7.1.5 rejecting the null hypothesis . 128

7.2 Chi-squared test . 129
7.3 Examples of data tables . 131

7.3.1 trisomy and pregnancy . 131
7.3.2 stop-and-frisk and race . 132

Tutorial 6: Data tables and Booleans 134
Objectives . 134

Data tables and the chi-squared test . 134
matrices and data tables . 134
Chi-squared test . 135
generating a data table . 135
Exercises . 136

Logical values and calculations . 138
logical tests . 138
calculations using Boolean vectors . 138
logical operators: AND and OR . 139
Exercises: . 140

8 Prior knowledge and Bayesian thinking 141
8.1 Prior knowledge . 141
8.2 Bayes’ formula . 142

8.2.1 positive and negative predictive values 145
8.2.2 Exercises . 146

8.3 Applications of Bayesian thinking . 148
8.3.1 when too much testing is bad . 148
8.3.2 reliability of scientific studies . 150
8.3.3 discussion questions . 151

5

Tutorial 7: Functions and sampling from data 153
Objectives: . 153

Functions in R . 153
defining a function . 153
calling a function . 154
using a function to generate random numbers 154
using replicate . 155
Exercises . 155

Selecting samples from data frames . 156
data frames are matrix arrays . 156
selecting some observations . 157
random sampling of observations . 157

9 Linear difference equations 158
9.1 Discrete time population models . 159

9.1.1 static population . 159
9.1.2 exponential population growth . 159
9.1.3 population with births and deaths . 161
9.1.4 dimensions of birth and death rates . 161
9.1.5 linear demographic models . 162

9.2 Solutions of linear difference models . 162
9.2.1 simple linear models . 162
9.2.2 models with a constant term . 163
9.2.3 population growth and decline . 164
9.2.4 Exercises . 166

Tutorial 8: For loops and dynamic models 168
Objectives: . 168

For loops and vectors . 168
components of for loops . 168
using vectors with loops . 169
using for loops for solving discrete-time dynamic models 169
Exercises: . 171

10 Graphical analysis of ordinary differential equations 173
10.1 Building differential equations . 174

10.1.1 from discrete time to continuous . 174
10.1.2 Exercises . 175
10.1.3 growth proportional to population size 176
10.1.4 chemical kinetics . 177
10.1.5 building nonlinear ODEs . 178

10.2 Qualitative analysis of ODEs . 179
10.2.1 graphical analysis of the defining function 180

6

10.2.2 fixed points and stability . 182
10.2.3 Outline of qualitative analysis of an ODE 185
10.2.4 Exercises . 188

10.3 Functions in R . 189
10.3.1 defining a function . 189
10.3.2 calling a function . 190
10.3.3 using a function to solve a difference equation 190
10.3.4 Exercises . 191

10.4 Modeling the spread of infectious disease spread 192
10.4.1 Discussion . 196

Tutorial 9: numeric solutions of ODEs 198
Objectives: . 198

Numeric solution of differential equations . 198
Plotting defining functions of ODEs . 200
Calling functions using strings (optional) . 201

11 Solutions of ordinary differential equations 202
11.1 Solutions of ordinary differential equations . 203

11.1.1 separate and integrate method . 204
11.1.2 behavior of solutions of linear ODEs . 206
11.1.3 solutions of nonhomogeneous ODEs . 206
11.1.4 Exercises . 208

11.2 Numeric solutions and the Forward Euler method 209
11.2.1 Exercises . 211

11.3 Forward Euler method in R . 212
11.3.1 implementation . 212
11.3.2 Exercises . 213
11.3.3 error analysis . 214
11.3.4 Exercises . 217

11.4 Applications of linear ODE models . 218
11.4.1 model of pharmacokinetics . 218
11.4.2 Discussion questions . 221

12 Markov models with discrete states 223
12.1 Building Markov models . 223
12.2 Markov property . 224

12.2.1 transition matrices . 229
12.2.2 probability of a string of states . 230
12.2.3 Exercises . 231

12.3 Markov models of medical treatment . 232
12.3.1 Discussion questions . 235

7

13 Probability distributions of Markov chains 236
13.1 Probability distribution vectors . 236

13.1.1 Markov chains . 238
13.2 matrix multiplication . 239

13.2.1 Exercises . 242
13.2.2 propagation of probability vectors . 243
13.2.3 Exercises . 243

13.3 Mutations and molecular evolution . 245
13.3.1 Discussion questions . 245

Tutorial 10: simulations of Markov models 248
Objectives . 248

Simulating Markov transitions . 248
Exercises . 249

Matrix multiplication . 251
Exercises . 252

Barplots for histograms and arrays . 253

14 Stationary distributions of Markov chains 255
14.1 History of Markov chains . 255
14.2 Stationary distributions . 257

14.2.1 Exercises . 260
14.3 Bioinformatics and Markov models . 261

15 Dynamics of Markov models 264
15.1 Phylogenetic trees . 264
15.2 Eigenvalues and eigenvectors . 266

15.2.1 basic linear algebra . 266
15.2.2 calculation of eigenvalues on paper . 269
15.2.3 calculation of eigenvectors on paper . 270
15.2.4 Exercises . 272
15.2.5 rate of convergence . 273

15.3 Eigenvectors in R . 276
15.4 Molecular evolution . 280

15.4.1 time since divergence . 282
15.4.2 phylogenetic distance . 284
15.4.3 Kimura model . 285
15.4.4 divergence of human and chimp genomes 286
15.4.5 Discussion questions . 288

References 289

8

Preface

What is a man, said Athos, who has no landscape? Nothing but mirrors and tides.
– Anne Michaels, Fugitive Pieces

This is an online book to help biologists and biology-adjacent folks learn quantitative skills
through the practice of programming in R. These skills can be roughly sorted into four types:

• Building models and understanding assumptions

• Writing code to perform computational tasks

• Performing mathematical analysis of models

• Working with data and using statistical tools

These skills interface, intertwine, and reinforce each other in the practice of biological research
and are thus presented concurrently in this book, instead of being corralled into separate
courses taught by different departments, like mathematics, statistics, and computer science.
Here I combine ideas and skills from all of these disciplines into an educational narrative
organized by increasing exposure to programming concepts.

A brief motivation of mathematical modeling

A mathematical model is a representation of some real object or phenomenon in terms of
quantities (numbers). The goal of modeling is to create a description of the object in question
that may be used to pose and answer questions about it, without doing hard experimental
work. A good analogy for a mathematical model is a map of a geographic area: a map cannot
record all of the complexity of the actual piece of land, because then the map would need to be
size of the piece of land, and then it wouldn’t be very useful! Maps, and mathematical models,
need to sacrifice the details and provide a birds-eye view of reality in order to guide the traveler
or the scientist. The representation of reality in the model must be simple enough to be useful,
yet complex enough to capture the essential features of what it is trying to represent.

Mathematical modeling has long been essential in physics: for instance, it is well known that
distance traveled by an object traveling at constant speed 𝑣 is proportional to the time traveled
(called 𝑡). This mathematical model can be expressed as an equation:

9

𝑑 = 𝑣𝑡

Since the time of Newton, physicists have been very successful at using mathematics to describe
the behavior of matter of all sizes, ranging from subatomic particles to galaxies. However,
mathematical modeling is a new arrow in a biologist’s quiver. Many biologists would argue
that living systems are much more complex than either atoms or galaxies, since even a single
cell is made up of a mind-boggling number of highly dynamic, interacting entities. That is
true, but new advances in experimental biology are producing data that make quantitative
methods indispensable for biology.

The advent of genetic sequencing in the 1970s and 80s has allowed us to determine the genomes
of different species, and in the last few years next-generation sequencing has reduced sequenc-
ing costs for an individual human genome to a few thousand dollars. The resulting deluge of
quantitative data has answered many outstanding questions, and also led to entirely new ones.
We now understand that knowledge of genomic sequences is not enough for understanding how
living things work, so the burgeoning field of systems biology investigates the interactions be-
tween genes, proteins, or other entities. The central question is to understand how a network
of interactions between individual molecules can lead to large-scale results, such as the devel-
opment of a fertilized egg into a complex organism. The human mind is not suited for making
correct intuitive judgements about networks comprised of thousands of actors. Addressing
questions of this complexity requires quantitative modeling.

Purpose of this book

This textbook is intended for a college-level course for biology and pre-medicine majors, or
more established scientists interested in learning the applications of mathematical methods
to biology. The book brings together concepts found in mathematics, computer science, and
statistics courses to provide the student a collection of skills that are commonly used in biolog-
ical research. The book has two overarching goals: one is to explain the quantitative language
that often is a formidable barrier to understanding and critically evaluating research results
in biological and medical sciences. The second is to teach students computational skills that
they can use in their future research endeavors. The main premise of this approach is that
computation is critical for understanding abstract mathematical ideas.

These goals are distinct from those of traditional mathematics courses that emphasize rigor and
abstraction. I strongly believe that understanding of mathematical concepts is not contingent
on being able to prove all of the underlying theorems. Instead, premature focus on abstraction
obscures the ideas for most students; it is putting the theoretical cart before the experiential
horse. I find that students can grasp deep concepts when they are allowed to experience them
tangibly as numbers or pictures, and those with an abstract mindset can generalize and add
rigor later. As I demonstrate in part 3 of the book, Markov chains can be explained without

10

relying on the machinery of measure theory and stochastic processes, which require graduate
level mathematical skills. The idea of a system randomly hopping between a few discrete
states is far more accessible than sigma algebras and martingales. Of course, some abstraction
is necessary when presenting mathematical ideas, and I provide correct definitions of terms
and supply derivations when I find them to be illuminating. But I avoid rigorous proofs, and
always favor understanding over mathematical precision.

The book is structured to facilitate learning computational skills. Over the course of the text
students accumulate programming experience, progressing from assigning values to variables
in the first chapter to solving nonlinear ODEs numerically by the end of the book. Learning
to program for the first time is a challenging task, and I facilitate it by providing sample
scripts for students to copy and modify to perform the requisite calculations. Programming
requires careful, methodical thinking, which facilitates deeper understanding of the models
being simulated. In my experience of teaching this course, students consistently report that
learning basic scientific programming is a rewarding experience, which opens doors for them
in future research and learning.

It is of course impossible to span the breadth of mathematics and computation used for mod-
eling biological scenarios. This did not stop me from trying. The book is broad but selective,
sticking to a few key concepts and examples which should provide enough of a basis for a
student to go and explore a topic in more depth. For instance, I do not go through the
usual menagerie of probability distributions in chapter 4, but only analyze the uniform and
the binomial distributions. If one understands the concepts of distributions and their means
and variances, it is not difficult to read up on the geometric or gamma distribution if one
encounters it. Still, I omitted numerous topics and entire fields, some because they require
greater mathematical sophistication, and others because they are too difficult for beginning
programmers, e.g. sequence alignment and optimization algorithms. I hope that you do not
end your quantitative journey with this book!

I take an even more selective approach to the biological topics that I present in every chapter.
The book is not intended to teach biology, but I do introduce biological questions I find
interesting, refer the reader to current research papers, and provide discussion questions for
you to wrestle with. This requires a basic explanation of terms and ideas, so most chapters
contain a broad brushstrokes summary of a biological field, e.g. measuring mutation rates,
epidemiology modeling, hidden Markov models for gene structure, and limitations of medical
testing. I hope the experts in these fields forgive my omitting the interesting details that they
spend their lives investigating, and trust that I managed to get the basic ideas across without
gross distortion.

Organization of the book

A course based on this textbook can be tailored to fit the quantitative needs of a biological
sciences curriculum. At the University of Chicago the course I teach has replaced the last

11

quarter of calculus as a first-year requirement for biology majors. This material could be
used for a course without a calculus pre-requisite that a student takes before more rigorous
statistics, mathematics, or computer science courses. It may also be taught as an upper-level
elective course for students with greater maturity who may be ready to tackle the eigenvalues
and differential equations chapters. My hope is that it may also prove useful for graduate
students or established scientists who need an elementary but comprehensive introduction
to the concepts they encounter in the literature or that they can use in their own research.
Whatever path you traveled to get here, I wish you a fruitful journey through biomathematics
and computation!

12

1 Arithmetic and variables

You can add up the parts, but you won’t have the sum;
You can strike up the march, there is no drum.
Every heart, every heart to love will come
But like a refugee.
–Leonard Cohen, Anthem

Mathematical modeling begins with a set of assumptions. In fact, one may say that a math-
ematical model is a bunch of assumptions translated into mathematics. These assumptions
may be more or less reasonable, and they may come from different sources. For instance,
many physical models are so well-established that we refer to them as laws; we are pretty
sure they apply to molecules, cells, and organisms as well as to inanimate objects. Thus we
may use physical laws as the foundation on which to build models of biological entities; these
are often known as first-principles (theory-based) models. Other times we have experimental
evidence which suggests a certain kind of relationship between quantities, perhaps we find that
the amount of administered drug and the time until the drug is completely removed from the
bloodstream are proportional to each other. This observation can be turned into an empirical
(experiment-based) model. Yet another type of model assumption is not based on either theory
or experiment, but simply on convenience: e.g. let us assume that the mutation rates in two
different loci are independent, and see what the implications are. These are sometimes called
toy or cartoon models. (see Jungck, Gaff, and Weisstein (2010))

This leads to the question: how do you decide whether a model is good? It is surprisingly
difficult to give a straightforward answer to this question. Of course, one major goal of a model
is to capture some essential features of reality, so in most biological modeling studies you will
see a comparison between experimental results and predictions of the model. But it is not
enough for a model to be faithful to experimental data! Think of a simple example: suppose
your experiment produced 5 data points as a function of time; it is possible to find a polynomial
(of fourth degree) that passes exactly through all 5 points, by specifying the coefficients of its
5 terms. This is called data fitting and it has a large role to play in mathematical modeling
of biology. However, I think you will agree that in this case we have learned very little: we
just substituted 5 values in the data set with 5 values of the coefficients of the mathematical
model. To heighten the absurdity, imagine a data set of 1001 points that you have modeled
using a 1000-degree polynomial. This is an example of overfitting, or making the model agree
with the data by making it overly complex.

13

Substituting a complicated model for a complicated real situation does not help understand
it. One necessary ingredient of a useful model is simplicity of assumptions. Simplicity in
modeling has at least two virtues: simple models can be grasped by our limited minds, and
simple assumptions can be tested against evidence. A simple model that fails to reproduce
experimental data can be more informative than a complex model that fits the data perfectly.
If a simple model fails, you have learned that you are missing something in your assumptions;
but a complex model can be right for the wrong reasons, like erroneous assumptions canceling
each other, or it may contain needless assumptions. This is why good modeling is a difficult
skill that balances simplicity of assumptions against fidelity to empirical data Cohen (2004) .
In this chapter you will learn how to do the following:

• distinguish variables and parameters in models

• describe the state space of a model

• perform arithmetic operations in R

• assign variables in R

1.1 Blood circulation and mathematical modeling

Galen was one of the great physicians of antiquity. He studied how the body works by per-
forming experiments on humans and animals. Among other things, he was famous for a careful
study of the heart and how blood traveled through the body. Galen observed that there were
different types of blood: arterial blood that flowed out of the heart, which was bright red, and
venous blood that flowed in the opposite direction, which was a darker color. This naturally
led to questions: what is the difference between venous and arterial blood? where does each
one come from and where does it go?

You, a reader of the 21st century, likely already know the answer: blood circulates through
the body, bringing oxygen and nutrients to the tissues through the arteries, and returns back
through the veins carrying carbon dioxide and waste products, as shown in Figure 1.1. Arterial
blood contains a lot of oxygen while venous blood carries more carbon dioxide, but otherwise
they are the same fluid. The heart does the physical work of pushing arterial blood out of
the heart, to the tissues and organs, as well as pushing venous blood through the second
circulatory loop that goes through the lungs, where it picks up oxygen and releases carbon
dioxide, becoming arterial blood again. This may seem like a very natural picture to you, but
it is far from easy to deduce by simple observation.

1.1.1 Galen’s theory of blood

Galen came up with a different explanation based on the notion of humors, or fluids, that was
fundamental to the Greek conception of the body. He proposed that the venous and arterial

14

Figure 1.1: Human blood circulates throughout the body and returns to the heart, veins shown
in blue and arteries in red. Circulatory System en by LadyofHats in public domain
via Wikimedia Commons.

15

blood were different humors: venous blood, or natural spirits, was produced by the liver, while
arterial blood, or vital spirits, was produced by the heart and carried by the arteries, as shown
in Figure 1.2. The heart consisted of two halves, and it warmed the blood and pushed both
the natural and vital spirits out to the organs; the two spirits could mix through pores in the
septum separating its right and left halves. The vital and natural spirits were both consumed
by the organs, and regenerated by the liver and the heart. The purpose of the lungs was to
serve as bellows, cooling the blood after it was heated by the heart.

Figure 1.2: Illustration of Galen’s conception of the blood system, showing different spirits
traveling in one direction, but not circulating. Reproduced by permission of Bar-
bara Becker.

Is this a good theory of how the heart, lungs, and blood work? Doctors in Europe thought
so for over one thousand years! Galen’s textbook on physiology was the standard for medical
students through the 17th century. The theory seemed to make sense, and explain what was
observable. Many great scientists and physicians, including Leonardo DaVinci and Avicenna,

16

https://faculty.humanities.uci.edu/bjbecker/
https://faculty.humanities.uci.edu/bjbecker/

did not challenge the inaccuracies such as the porous septum in the heart, even though they
could not see the pores themselves. It took both better observations and a quantitative testing
of the hypothesis to challenge the orthodoxy.

1.1.2 Mathematical testing of the theory

William Harvey was born in England and studied medicine in Padua under the great physi-
cian Hieronymus Fabricius. He became famous, and would perform public demonstrations of
physiology, using live animals for experiments that would not be approved today. He also
studied the heart and the blood vessels, and measured the volume of the blood that can be
contained in the human heart. He was quite accurate in estimating the correct volume, which
we now know to be about 70 mL (1.5 oz). What is even more impressive is that he used this
quantitative information to test Galen’s theory.

Let us assume that all of the blood that is pumped out by the heart is consumed by the tissues,
as Galen proposed; let us further assume that the heart beats at constant rate of 60 beats per
minute, with a constant ejection volume of 70 ml. Then over the course of a day, the human
body would consume about

Volume = 70 mL × 60 (beats per minute) × 60 (minutes per hour) × 24 (hours per day)

or over 6,000 liters of blood! You may quibble over the exact numbers (some hearts beat faster
or slower, some hearts may be larger or smaller) but the impact of the calculation remains the
same: it is an absurd conclusion. Galen’s theory would require the human being to consume
and produce a quantity of fluid many times the volume of the human body (about 100 liters)
in a day! This is a physical impossibility, so the only possible conclusion in that Galen’s model
is wrong.

This led Harvey to propose the model that we know today: that blood is not consumed by the
tissues, but instead returns to the heart and is re-used again [?]. This is why we call the heart
and blood vessels part of the circulatory system of the body. This model was controversial
at the time - some people proclaimed they would “rather be wrong with Galen, than right
with Harvey” - but eventually became accepted as the standard model. What is remarkable is
that Harvey’s argument, despite being grounded in empirical data, was strictly mathematical.
He adopted the assumptions of Galen, made the calculations, and got a result which was
inconsistent with reality. This is an excellent example of how mathematical modeling can be
useful, because it can provide clear evidence against a wrong hypothesis.

1.2 Parameters and variables in models

Many biologists remain skeptical of mathematical modeling. The criticism can be summarized
like this: a theoretical model either agrees with experiment, or it does not. In the former case,

17

it is useless, because the data are already known; in the latter case, it is wrong! As I indicated
above, the goal of mathematical modeling is not to reproduce experimental data; otherwise,
indeed, it would only be of interest to theoreticians. The correct question to ask is, does a
theoretical model help us understand the real thing? There are at least three ways in which a
model can be useful:

• A model can help a scientist make sense of complex data, by testing whether a particular
mechanism explains the observations. Thus, a model can help clarify our understanding
by throwing away the non-essential features and focusing on the most important ones.

• A mathematical model makes predictions for situations that have not been observed. It
is easy to change parameters in a mathematical model and calculate the effects. This
can lead to new hypotheses that can be tested by experiments.

• Model predictions can lead to better experimental design. Instead of trying a whole
bunch of conditions, the theoretical model can suggest which ones will produce big
effects, and thus can save a lot of work for the lab scientist.

In order to make a useful model of a complex living system, you have to simplify it. Even
if you are only interested in a part of it, for instance a cell or a single molecule, you have to
make simplifying choices. A small protein has thousands of atoms, a cell consists of millions
of molecules, which all interact with each other; keeping track mathematically of every single
component is daunting if not impossible. To build a useful mathematical model one must
choose a few quantities which describe the system sufficiently to answer the questions of interest.
For instance, if the positions of a couple of atoms in the protein you are studying determine
its activity, those positions would make natural quantities to include in your model. You will
find more specific examples of models later in this chapter.

Once you have decided on the essential quantities to be included in the model, these are
divided into variables and parameters. As suggested by the name, a variable typically varies
over time and the model tracks the changes in its value, while parameters usually stay constant,
or change more slowly. However, that is not always the case. The most important difference
is that variables describe quantities within the system being modeled, while parameters
usually refer to quantities which are controlled by something outside the system.

As you can see from this definition, the same quantity can be a variable or a parameter depend-
ing on the scope of the model. Let’s go back to our example of modeling a protein: usually the
activity (and the structure) of a protein is influenced by external conditions such as pH and
temperature; these would be natural parameters for a model of the molecule. However, if we
model an entire organism, the pH (e.g. of the blood plasma) and temperature are controlled by
physiological processes within the organism, and thus these quantities will now be considered
variables.

Perhaps the clearest way to differentiate between variables and parameters is to think about
how you would present a data set visually. We will discuss plotting graphs of functions in
chapter 2, and plotting data sets in chapter 3, but the reader has likely seen many such plots

18

before. Consider which of the quantities you would to plot to describe the system you are
modeling. If the quantity belongs on either axis, it is a variable, since it is important to
describe how it changes. The rest of the quantities can be called parameters. Of course,
depending on the question you ask, the same quantity may be plotted on an axis or not, which
is why this classification is not absolute.

After we have specified the essential variables for your model, we can describe a complex and
evolving biological system in terms of its state. This is a very general term, but it usually
means the values of all the variables that you have chosen for the model, which are often
called state variables. For instance, an ion channel can be described with the state variable
of conformation, which may be in a open state or in a closed state. The range, or collection
of all different states of the system is called the state space of the model. Below you will find
examples of models of biological systems with diverse state spaces.

1.2.1 discrete state variables: genetics

There are genes which are present in a population as two different versions, called *alleles} -
let us use letters 𝐴 and 𝐵 to label them. One may describe the genetic state of an individual
based on which allele it carries. If this individual is haploid, e.g. a bacterium, then it only
carries a single copy of the genome, and its state can be described by a single variable with
the state space of 𝐴 or 𝐵.

A diploid organism, like a human, possesses two copies of each gene (unless it is on one of
the sex chromosomes, X or Y); each copy may be in either state 𝐴 or 𝐵. This may seem to
suggest that there are four different values in the genetic state space, but if the order of the
copies does not matter (which is usually the case), then 𝐴𝐵 and 𝐵𝐴 are effectively the same,
so the state space consists of three values: 𝐴𝐴, 𝐵𝐵, and 𝐴𝐵.

1.2.2 discrete state variables: population

Consider the model of a population of individuals, with the variable of number of individuals
(populations size) and parameters being the birth and death rates. The state space of this
model is all integers between 0 and infinity.

Consider the model of a population of individuals who may get infected. Assume that the
total number of individuals does not change (that is, there are no births and deaths) and that
these individuals can be in one of two states: healthy or sick (in epidemiology these are called
susceptible or infectious). There are typically two parameters in such models: the probability
of infection and the probability of recovery. Since the total population is fixed at some number
𝑁 , the space space of the model is all pairs of integers between 0 and 𝑁 that add up to 𝑁 .

19

1.2.3 continuous state variables: concentration

Suppose that a biological molecule is produced with a certain rate and degraded with a dif-
ferent rate, and we would like to describe the quantity of the molecule, usually expressed as
concentration. The relevant variables here are concentration and time, and you will see those
variables on the axes of many plots in biochemistry. Concentration is a ratio of the number
of molecules and the volume, so the state space can be any positive real number (although
practically there is a limit as to how many molecules can fit inside a given volume, but for
simplicity we can ignore this).

Going even further, let us consider an entire cell, which contains a large number of different
molecules. We can describe the state of a cell as the collection of all the molecular concentra-
tions, with the parameters being the rates of all the reactions going on between those molecules.
The state space for this model with 𝑁 different molecules is 𝑁 positive real numbers.

1.2.4 multiple variables in medicine

Doctors take medical history from patients and measure vital signs to get a picture of a patient’s
health. These can be all be thought of as variables in a model of a person that physicians
construct. Some of these variables are discrete, for instance whether there is family history
of hypertension, which has only two values: yes or no. Other variables are numbers with a
range, such as weight and blood pressure. The state space of this model is a combination of
categorical values (such as yes/no) and numerical values (within a reasonable range).

1.2.5 Discussion questions

Several biological models are indicated below. Based on what you know, divide the quantities
into variables and parameters and describe the state space of the model. Note that there may
be more than one correct interpretation

1. The volume of blood pumped by the heart over a certain amount of time, depending on
the heart rate and the ejection volume.

2. The number of wolves in a national forest depending on the number of wolves in the
previous year, the birth rate, the death rate, and the migration rate.

3. The fraction of hemes in hemoglobin (a transport protein in red blood cells) which are
bound to oxygen depending on the partial pressure of oxygen and the binding coopera-
tivity of hemoglobin.

4. The number of mutations that occur in a genome, depending on the mutation rate, the
amount of time, and the length of the genome.

20

5. The concentration of a drug in the blood stream depending on the dose, time after
administration, and the rate of metabolism (processing) of the drug.

6. Describing an outbreak of an infectious disease in a city in terms of the fractions of in-
fected, healthy, and recovered people, depending on the rate of infection, rate of recovery,
and the mortality rate of the disease.

1.3

21

Tutorial 1: First steps for coding

Learning goals

In this tutorial you will learn to:

• Perform arithmetic operations in R

• Understand numeric errors

• Choose variable names

• Assign values to variables

• Print out variable values

A central goal of this book is to help you, the reader, gain experience with computation, which
requires learning some programming (a.k.a. “coding”). Programming is a way of interacting
with computers through a symbolic language, unlike the graphic user interfaces that we’re all
familiar with. Basically, programming allows you to make a computer do exactly what you
want it to do.

There is a vast number of computer languages with distinct functionalities and personalities.
Some are made to talk directly to the computer’s “brain” (CPU and memory), e.g. Assembly,
while others are better suited for human comprehension, e.g. python or Java. Programming
in any language involves two parts: 1) writing a program (code) using the commands and the
syntax for the language; 2) running the code by using a compiler or interpreter to translate
the commands into machine language and then making the computer execute the actions. If
your code has a mistake in it, the compiler or interpreter should catch it, and return an error
message to you instead of executing the code. Sometimes, though, the code may pass muster
with the interpreter/compiler, but it may still have a mistake (bug). This can be manifested
in two different ways: either the code execution does not produce the result that you intended,
or it hangs up or crashes the computer (the latter is hard to do with the kind of programming
we will be doing). We will discuss errors and how to prevent and catch these bugs as you
develop your programming skills.

In this course, our goal is to compute mathematical models and to analyze data, so we choose
a language that is designed specially for these tasks, which is called R. To proceed, you’ll
need to download and install R, which is freely available here. In addition to downloading the
language (which includes the interpreter that allows you to run R code on your computer) you

22

will need to download a graphic interface for writing, editing, and running R code, called R
Studio (coders call this an IDE, or an Integrated Developer Environment), which is also free
and available here.

R Studio and Quarto

In this course you will program in the R language, inside the RStudio IDE (integrated developer
environment. We will write code inside Quarto documents, which are text files with the
extension .qmd. These documents combine chunks of code with formatted text, that can be
rendered to create reports in HTML, PDF, or Word format. More details on using Quarto are
here. This whole book is written in Quarto files and then compiled to produce the beautiful
(I hope you agree) web book that you are reading.

If you open an qmd file in R Studio, you will see a Render button on top of the Editor window.
Clicking it initiates the processing of the file into an output document (in HTML, PDF, or
Word format) that includes the text as well as the output of any embedded R code chunks
within the document. You can embed an R code chunk like this:

print("Hello there!")

To run the code inside a single R code chunk, click the green arrow in the top right of the
chunk. This will produce an output, in this case the text “Hello there!”. Inside the generated
output file, for example the web book you may be reading, the output of code chunks is shown
below the box with the R code and indicated by two hashtags.

Arithmetic in R

Computer arithmetic

Numbers are stored on computers using floating-point arithmetic which has a limited
amount of memory to represent a number. This means that doing calculations in R
can produce different types of arithmetic errors, such as overflow (number too large and
is considered infinite), underflow (number too small and is considered zero), or relative
error (two numbers too close together to distinguish.)

Arithmetic operations are necessary for any computation. R uses the expected symbols: +, -,
*, /for addition, subtraction, multiplication, and division. The symbol ^ is used for raising a
number to a power, like this:

23

https://quarto.org/docs/computations/r.html

10^2
7^3

The gray boxes above contain the R code and the output is printed below. Each line starts
with [1], which will be explained in the next section.

There are some built-in numbers, in particular pi and e. The first is defined by the two letters
pi, but e is obtained using the function exp(), which gives the value of e raised to the power
of the number in parentheses. For example:

pi
exp(1)
exp(2)

Scientific notation

Try typing a large number with all the digits, like 10 million:

10000000

It gets pretty tedious to type in all the zeros, so if you don’t have as many significant figures
as there are digits, the scientific notation is very handy. The code chunk above produces
the output 1e+07, which indicates 1 times 10 to the seventh power.

For a small number, the power is negative:

0.000006

This produces the output 6e-06, or six times ten to the negative sixth power. Please note
that this notation does not use the multiplication symbol * or the power symbol ^; using them
would produce an error.

What can go wrong

Computers were designed to perform calculations and they are really good at it, but even
powerful modern machines have limits. Numbers are stored in computer memory and have to
be handled by the processor, both finite resources. Essentially, there are numbers too large for
a computer to handle, and if you try to use one beyond the limit, you will cause an overflow
error. In R, if you try to use a number that is too large, it will be considered infinite and
instead of the number you will get the value Inf.

Surprisingly, a number that is too small will also cause a similar problem, called an underflow
error. This is because storing a small number also requires storage space, in part to indicate

24

how many zeros there are after the decimal (or binary) point. In R, if you try to use a number
that is too small, it will be considered 0.

There is another limitation of computer arithmetic, also caused by the finite nature of com-
putation. Numbers in computers are stored using floating-point arithmetic, which represents
numbers using a finite number of digits (or binary bits). Thus numbers that are close together
will be represented the same, which is particularly problematic for trying to calculate their
difference. The largest difference that is not distinguished by computer arithmetic is called
the machine epsilon (with a nod to mathematicians), in other words, subtract the numbers 1
and 1+𝜖 and find the largest value of 𝜖 for which this operation returns 0. Note that this value
is very different than the threshold for underflow error, as you will explore in the exercises
below.

Exercises

The following exercises ask you to perform computational tasks using R. Type your code in
the box below and try to do the task on your own before clicking on the Answer or Hint boxes
to expand them.

1. Calculate the value of pi raised to the 10th power.

Answer

Around 93648.05

2. Use the scientific notation to multiply 45 million by pi cubed.

Answer

Around 1395282451

3. In R the function exp(x) is used to raise the number e to the power x. Try putting
increasingly larger numbers into the function until R can’t handle it and returns Inf
(infinity). Report the power of e at which this happens and the estimate the largest
number that R can handle.

25

Hint

Try increasing the powers by 100, e.g. exp(100), exp(200), etc. Once you see the output
Inf (infinity) then go back down to see where it changes

4. In the same fashion, try increasingly large negative powers of e to find out what happens
when you give R a number that is too small for it to handle and it returns 0. Report the
power of e at which this happens and the smallest value and estimate the smallest value
that R can handle.

Hint

Try increasing the negative powers by 100, e.g. exp(-100), exp(-200), etc., and once you
see the result of 0 then dial back the power to see where it changes

5. How close can two numbers be before R thinks they are the same? Subtract 100 and
a number increasingly close to it (e.g. 100 and 100.0001) until R returns a difference of
zero. Report at what value of the actual difference this happens.

Hint

Use the scientific notation, e.g. 100 - (100+1e-5)

Assigning variables

Variable names

Variables

Variables in programming languages are used to store and access numerical or other
information. After assigning it a value for the first time (initializing), a variable name
can be used to represent the value we assigned to it. Invoking the name of variable recalls
the stored value from computer’s memory.

There are a few rules about naming variables: a name cannot be a number or an arithmetic
operator like +, in fact it cannot contain symbols for operators or spaces inside the name,
or else confusion would reign. Variable names may contain numbers, but not as the first

26

character. When writing code it is good practice to give variables informative names, like
height or city_pop.

The symbol = is used to assign a value to a variable in most programming languages, and can
be used in R too. However, it is customary for R to use the symbols <- together to indicate
assignment, like this:

var1 <- 5

Displaying variable values

After this command the variable var1 has the value 5, which you can see in the upper right
frame in R Studio called Environment. In order to display the value of the variable as an
output on the screen, use the special command print() (it’s actually a function, as we’ll
discuss later).

print(var1)

You can see the output under the code box. The print() function always adds [1] at the
beginning of the line, which indicates that this is the first value in the variable. In this case,
the variable contains only one value, so it does not contain any useful information, but if there
are multiple values in the variable (called a vector variable that are discussed in Tutorial 2)
and they take up more than one line, the bracketed value at the start of the next line will
indicate the ordered number (index) of the first value on that line.

Changing variable values

The following two commands show that the value of a variable can be changed after it has
been initialized:

var1 <- 5
var1 <- 6
print(var1)

While seemingly contradictory, the commands are perfectly clear to the computer: first var1
is assigned the value 5 and then it is assigned 6. After the second command, the first value is
forgotten, so any operations that use the variable var1 will be using the value of 6.

Entire expressions can be placed on the right hand side of an assignment command: they could
be arithmetic or logical operations as well as functions, which we will discuss later on. For
example, the following commands result in the value 6 being assigned to the variable var2:

27

var1 <- 5
var2 <- var1+1
print(var2)

Even more mind-blowing is that the same variable can be used on both sides of an assignment
operator! The R interpreter first looks on the right hand side to evaluate the expression and
then assigns the result to the variable name on the left hand side. So for instance, the following
commands increase the value of var1 by 1, and then assign the product of var1 and var2 to
the variable var2:

var1 <- var1 + 1
print(var1)
var2 <- var1*var2
print(var2)

What can go wrong

We have seen examples of how to assign values to variables, so here is an example of how NOT
to assign values:

var1 + 1 <- var1

The assignment operation is not symmetric and the left-hand side of an assignment command
should contain only the variable to which you are assigning a value, not an arithmetic expres-
sion to be performed.

Another common mistake is expecting the assignment to connect the variables on the right
hand side with the variable in some permanent way. For example, the following script multiplies
variables big and small and assigns them to prod, and then changes the value of small, but
this does NOT change the value of prod:

big <- 100
small <- 2
prod <- big*small
print(prod)
small <- 3
print(prod)

The assignment operation does only one thing: it changes the value of the left-hand-side
variable at the time when the R interpreter reads that line. If you want the value of prod to
reflect the new value of small, you need to perform the assignment operation again:

28

prod <- big*small
print(prod)

Exercises

The following R commands or scripts contain errors; your job is to fix them so they do what
each exercise asks you to do. Try figuring out the errors on your own before clicking on the
Hint box to expand it.

1. Assign the value -10 to the variable neg

neg -> -10

Hint

The arrow should point from the value to the variable being assigned

2. Assign the value 5 to the variable pac and then increase its value by 3

2pac <- 5
pac <- +3

Hint

2pac was a great artist, not a variable. Use the variable pac on both sides of the <-

3. Assign the values 4 and 7 to two variables part1 and part2, then add them together
and assign the sum to a new variable

total <- part1 + part2
part1 <- 4
part2 <- 7

Hint

Switch around the order of the commands

4. Assign the value 43 to the variable age, then increase it by 1 and assign it to the same
variable

29

age <- 43
age + 1

Hint

Assign the calculation in the last line to the same variable

5. Assign the value 10 to variable rad, then calculate the area of the circle with that radius
using the formula 𝐴 = 𝜋𝑟2 and assign it to a new variable

rad <- 10
area <- pi r^2

Hint

Need to use the multiplication symbol *; Check that variable names match

30

2 Functions and their graphs

Some fathers, if you ask them for the time of day, spit silver dollars.
–Donald Barthelme, The Dead Father

Mathematical models describe how various quantities affect each other. In the last chapter
we learned that these descriptions can be written down, often in the form of an equation.
For instance, we can describe the total volume of blood pumped over a period of time as the
product of stroke volume, the heart rate and the number of minutes, which can be written as
an equation. The different quantities have their own meaning and roles, depending on what
they stand for. To better describe how these quantities are related we use the deep idea of
mathematical functions. In this chapter you will learn to do the following:

• use dimensional analysis to deduce the meaning of quantities in a model
• understand the concept of function, dependent and independent variables
• recognize basic functional forms and the shape of their graphs
• use R to plot functions
• understand basic models of reaction rates

2.1 Dimensions of quantities

What distinguishes a mathematical model from a mathematical equation is that the quantities
involved have a real-world meaning. Each quantity represents a measurement, and associated
with each one are the units of measurement. The number 173 is not enough to describe the
height of a person - you are left to wonder 173 what? meters, centimeters, nanometers, light-
years? Obviously, only centimeters make sense as a unit of measurement for human height;
but if we were measuring the distance between two animals in a habitat, meters would be a
reasonable unit, and it were the distance between molecules in a cell, we would use nanometers.
Thus, any quantity in a mathematical model must have associated units, and any graphs of
these quantities must be labeled accordingly.

In addition to units, each variable and parameter has a meaning, which is called the dimension
of the quantity. For example, any measurement of length or distance has the same dimension,
although the units may vary. The value of a quantity depends on the units of measurement,
but its essential dimensionality does not. One can convert a measurement in meters to that
in light-years or cubits, but one cannot convert a measurement in number of sheep to seconds
- that conversion has no meaning.

31

Thus leads us to the fundamental rule of mathematical modeling: terms that are added or
subtracted must have the same dimension. This gives mathematical modelers a useful
tool called dimensional analysis, which involves replacing the quantities in an equation with
their dimensions. This serves as a check that all dimensions match, as well as allowing to
deduce the dimensions of any parameters for which the dimension was not specified. Smith
(1968)

Example. As we saw in chapter 1, the relationship between the amount blood pumped by
a heart in a certain amount of time is expressed in the following equation, where 𝑉𝑡𝑜𝑡 and 𝑉𝑠
are the total volume and stroke volume, respectively, 𝑅 is the heart rate, and 𝑡 is the time:

𝑉𝑡𝑜𝑡 = 𝑉𝑠𝑅𝑡

The dimension of a quantity 𝑋 is denoted by [𝑋]; for example, if 𝑡 has the dimension of time,
we write [𝑡] = 𝑡𝑖𝑚𝑒. The dimension of volume is [𝑉𝑡𝑜𝑡] = 𝑙𝑒𝑛𝑔𝑡ℎ3, the dimension of stroke
volume is [𝑉𝑠] = 𝑣𝑜𝑙𝑢𝑚𝑒/𝑏𝑒𝑎𝑡 and the dimension of time 𝑡 is time, so we can re-write the
equation above in dimensional form:

𝑙𝑒𝑛𝑔𝑡ℎ3 = 𝑙𝑒𝑛𝑔𝑡ℎ3/𝑏𝑒𝑎𝑡 × 𝑅 × 𝑡𝑖𝑚𝑒

Solving this equation for R, we find that it must have the dimensions of [𝑅] = 𝑏𝑒𝑎𝑡𝑠/𝑡𝑖𝑚𝑒.
It can be measured in beats per minute (typical for heart rate), or beats per second, beats
per hour, etc. but the dimensionality of the quantity cannot be changed without making the
model meaningless.

There are also dimensionless quantities, or pure numbers, which are not tied to a physical
meaning at all. Fundamental mathematical constants, like 𝜋 or 𝑒, are classic examples, as are
some important quantities in physics, like the Reynolds number in fluid mechanics. Strogatz
(2001) Quantities with a dimension can be made dimensionless by dividing them by another
quantity with the same dimension and “canceling” the dimensions. For instance, we can
express the height of a person as a fraction of the mean height of the population; then the
height of a tall person will become a number greater than 1, and the height of a short one will
become less than 1. This new dimensionless height does not have units of length - they have
been divided out by the mean height. This is known as rescaling the quantity, by dividing it
by a preferred scale. There is a fundamental difference between rescaling and changing the
units of a quantity: when changing the units, e.g. from inches to centimeters, the dimension
remains the same, but if one divides the quantity by a scale, it loses its dimension.

Example. The model for a population of bacteria that doubles every hour is described by
the equation, where 𝑃0 is initial number of bacteria and 𝑃 is the population after 𝑡 hours:

𝑃 = 𝑃02𝑡

Let us define the quantity 𝑅 = 𝑃/𝑃0, so we can say that population increased by a factor
of 𝑅 after 𝑡 hours. This ratio is a dimensionless quantity because 𝑃 and 𝑃0 have the same

32

dimension of bacterial population, which cancel out. The equation for 𝑅 can be written as
follows:

𝑅 = 2𝑡

According to dimensional analysis, both sides of the equation have to be dimensionless, so 𝑡
must also be a dimensionless variable. This is surprising, because 𝑡 indicates the number of
hours the bacterial colony has been growing. This reveals the subtle fact that 𝑡 is a rescaled
variable obtained by dividing the elapsed time by the length of the reproductive cycle. Because
of the assumption that the bacteria divide exactly once an hour, 𝑡 counts the number of hours,
but if they divided once a day, 𝑡 would denote the number of days. So 𝑡 doesn’t have units or
dimensions, but instead denotes the dimensionless number of cell divisions.

2.1.1 Exercises

For each biological model below determine the dimensions of the parameters, based on the
given dimensions of the variables.

1. Model of number of mutations 𝑀 as a function of time 𝑡:
𝑀(𝑡) = 𝑀0 + 𝜇𝑡

2. Model of molecular concentration 𝐶 as a function of time 𝑡:
𝐶(𝑡) = 𝐶0𝑒−𝑘𝑡

3. Model of tree height 𝐻 (length) as a function of age 𝑎 (time):

𝐻(𝑎) = 𝑏𝑎
𝑐 + 𝑎

4. Model of cooperative binding of ligands, with fraction of bound receptors 𝜃 as a function
of ligand concentration 𝐿:

𝜃(𝐿) = 𝐿𝑛

𝐿𝑛 + 𝐾𝑑

5. Model of concentration of a gene product 𝐺 (concentration) as a function of time 𝑡:
𝐺(𝑡) = 𝐺𝑚(1 − 𝑒−𝛼𝑡)

6. Michaelis-Menten model of enzyme kinetics, 𝑣 is reaction rate (1/time) and 𝑆 is substrate
concentration:

𝑣(𝑆) = 𝑣𝑚𝑎𝑥𝑆
𝐾𝑚 + 𝑆

7. Logistic model of population growth, 𝑃 is population size and time 𝑡:

𝑃(𝑡) = 𝐴𝑒𝑘𝑡

1 + 𝐵(𝑒𝑘𝑡 − 1)

33

2.2 Functions and their graphs

A relationship between two variables addresses the basic question: when one variable changes,
how does this affect the other? An equation, like the examples in the last section, allows
one to calculate the value of one variable based on the other variable and parameter values.
In this section we seek to describe more broadly how two variables are related by using the
mathematical concept of functions.

Definition

A function is a mathematical rule which has an input and an output. A function returns
a well-defined output for every input, that is, for a given input value the function returns
a unique output value.

In this abstract definition of a function it doesn’t have to be written as an algebraic equation, it
only has to return a unique output for any given input value. In mathematics we usually write
them down in terms of algebraic expressions. As in mathematical models, you will see two
different kinds of quantities in equations that define functions: variables and parameters. The
input and the output of a function are usually variables, with the input called the independent
variable and the output called the dependent variable.

The relationship between the input and the output can be graphically illustrated in a graph,
which is a collection of paired values of the independent and dependent variable drawn as a
curve in the plane. Although it shows how the two variables change relative to each other,
parameters may change too, which results in a different graph of the function. While graphing
calculators and computers can draw graphs for you, it is very helpful to have an intuitive
understanding about how a function behaves, and how the behavior depends on the parameters.
Here are the three questions to help picture the relationship (assume 𝑥 is the independent
variable and it is a nonnegative real number):

1. what is the value of the function at 𝑥 = 0?
2. what does the function do when 𝑥 becomes large (𝑥 → ∞)?
3. what does the function do between the two extremes?

Below you will find examples of fundamental functions used in biological models with descrip-
tions of how their parameters influence their graphs.

2.2.1 linear and exponential functions

The reader is probably familiar with linear and exponential functions from algebra courses.
However, they are so commonly used that it is worth going over them to refresh your memory
and perhaps to see them from another perspective.

34

Definition

A linear function 𝑓(𝑥) is one for which the difference in two function values is the same
for a specific difference in the independent variable.

In mathematical terms, this can be written an equation for any two values of the independent
variable 𝑥1 and 𝑥2 and a difference Δ𝑥:

𝑓(𝑥1 + Δ𝑥) − 𝑓(𝑥1) = 𝑓(𝑥2 + Δ𝑥) − 𝑓(𝑥2)

The general form of the linear function is written as follows:

𝑓(𝑥) = 𝑎𝑥 + 𝑏 (2.1)

The function contains two parameters: the slope 𝑎 and the y-intercept 𝑏. The graph of the
linear function is a line (hence the name) and the slope 𝑎 determines its steepness. A positive
slope corresponds to the graph that increases as 𝑥 increases, and a negative slope corresponds
to a declining function. At 𝑥 = 0, the function equals 𝑏, and as 𝑥 → ∞, the function approaches
positive infinity if 𝑎 > 0, and approaches negative infinity if 𝑎 < 0.

Definition

An exponential function 𝑓(𝑥) is one for which the ratio of two function values is the same
for a specific difference in the independent variable.

Mathematically speaking, this can be written as follows for any two values of the independent
variable 𝑥1 and 𝑥2 and a difference Δ𝑥:

𝑓(𝑥1 + Δ𝑥)
𝑓(𝑥1) = 𝑓(𝑥2 + Δ𝑥)

𝑓(𝑥2)

Exponential functions can be written using different symbolic forms, but they all have a
constant base with the variable 𝑥 in the exponent. I prefer to use the constant 𝑒 (base of the
natural logarithm) as the base of all the exponential functions, for reasons that will become
apparent in chapter 15. This does not restrict the range of possible functions, because any
exponential function can be expressed using base 𝑒, using a transformation: 𝑎𝑥 = 𝑒𝑥 ln(𝑎). So
let us agree to write exponential functions in the following form:

𝑓(𝑥) = 𝑎𝑒𝑟𝑥 (2.2)

The function contains two parameters: the rate constant 𝑟 and the multiplicative constant
𝑎. The graph of the exponential function is a curve which crosses the y-axis at 𝑦 = 𝑎 (plug

35

in 𝑥 = 0 to see that this is the case). As 𝑥 increases, the behavior of the graph depends on
the sign of the rate constant 𝑟. If 𝑟 > 0, the function approaches infinity (positive if 𝑎 > 0,
negative if 𝑎 < 0) as 𝑥 → ∞. If 𝑟 < 0, the function decays at an ever-decreasing pace and
asymptotically approaches zero as 𝑥 → ∞. Thus the graph of 𝑓(𝑥) is a curve either going to
infinity or a curve asymptotically approaching 0, and the steepness of the growth or decay is
determined by 𝑟.

0 1 2 3 4 5

0
10

20

x

f(
x)

(a) Linear functions

0 2 4 6 8 10

0
5

10
15

x

f(
x)

(b) Exponential function

Figure 2.1: Can you identify which linear function has the positive slope and which one neg-
ative? Which exponential function has a positive rate constant and which one
negative?

2.2.2 Exercises

Answer the questions below, some of which refer to the function graphs in Figure 2.1.

1. Which of the linear graphs in the first figure corresponds to 𝑓(𝑥) = 5𝑥 and which
corresponds to 𝑓(𝑥) = 10−𝑥? State which parameter allows you to connect the function
with its graph and explain why.

2. Which of the exponential graphs in the second figure corresponds to 𝑓(𝑥) = 0.1𝑒0.5𝑥 and
which corresponds to 𝑓(𝑥) = 12𝑒−0.2𝑥? State which parameter allows you to connect the
function with its graph and explain why.

3. Demonstrate algebraically that a linear function of the form given in equation 2.1 satisfies
the property of linear functions from definition ??.

4. Demonstrate algebraically that an exponential function of the form given in equation 2.2
satisfies the property of exponential functions from definition ??.

5. Modify the exponential function by adding a constant term to it 𝑓(𝑥) = 𝑎𝑒𝑟𝑥 + 𝑏. What
is is the value of this function at 𝑥 = 0?

6. How does the function defined in the previous exercise, 𝑓(𝑥) = 𝑎𝑒𝑟𝑥 + 𝑏, how does it
behave as 𝑥 → ∞ if 𝑟 > 0?

36

7. How does the function 𝑓(𝑥) = 𝑎𝑒𝑟𝑥 + 𝑏 behave as 𝑥 → ∞ if 𝑟 < 0?

2.2.3 rational and logistic functions

Let us now turn to more complex functions, made up of simpler components that we under-
stand. Consider a ratio of two polynomials, called a rational function. The general form of
such functions can be written down as follows, where ellipsis stands for terms with powers
lower than 𝑛 or 𝑚:

𝑓(𝑥) = 𝑎0 + ... + 𝑎𝑛𝑥𝑛

𝑏0 + ... + 𝑏𝑚𝑥𝑚 (2.3)

The two polynomials may have different degrees (highest power of the terms, 𝑛 and 𝑚), but
they are usually the same in most biological examples. The reason is that if the numerator and
the denominator are “unbalanced”, one will inevitably overpower the other for large values of
𝑥, which would lead to the function either increasing without bound to infinity (if 𝑛 > 𝑚) or
decaying to zero (if 𝑚 > 𝑛). There’s nothing wrong with that, mathematically, but rational
functions are most frequently used to model quantities that approach a nonzero asymptote for
large values of the independent variable.

For this reason, let us assume 𝑚 = 𝑛 and consider what happens as 𝑥 → ∞. All terms other
than the highest-order terms become very small in comparison to 𝑥𝑛 (this is something you can
demonstrate to yourself using R), and thus both the numerator and the denominator approach
the terms with power 𝑛. This can be written using the mathematical limit notation lim𝑥→∞
which describes the value that a function approaches when the independent variable increases
without bound:

lim
𝑥→∞

𝑎0 + ... + 𝑎𝑛𝑥𝑛

𝑏0 + ... + 𝑏𝑛𝑥𝑛 = 𝑎𝑛𝑥𝑛

𝑏𝑛𝑥𝑛 = 𝑎𝑛
𝑏𝑛

Therefore, the function approaches the value of 𝑎𝑛/𝑏𝑛 as 𝑥 grows.

Similarly, let us consider what happens when 𝑥 = 0. Plugging this into the function results in
all of the terms vanishing except for the constant terms, so

𝑓(0) = 𝑎0
𝑏0

Between 0 and infinity, the function either increases or decreases monotonically, depending
on which value (𝑎𝑛/𝑏𝑛 or 𝑎0/𝑏0) is greater. Two examples of plots of rational functions are
shown in figure ?@fig-ch2_sigmoidal_plots, which shows graphs increasing from 0 to 1.
Depending on the degree of the polynomials in a rational function, it may increase more
gradually (solid line) or more step-like (dashed line).

Example. The following model, called the Hill equation , describes the fraction of receptor
molecules which are bound to a ligand, which is a chemical term for a free molecule that binds
to another, typically larger, receptor molecule. 𝜃 is the fraction of receptors bound to a ligand,

37

𝐿 denotes the ligand concentration, 𝐾𝑑 is the dissociation constant, and 𝑛 called the binding
cooperativity or Hill coefficient:

𝜃 = 𝐿𝑛

𝐿𝑛 + 𝐾𝑑

The Hill equation is a rational function, and ?? shows plots of the graphs of two such function
in the right panel. This model is further explored in exercise 2.2.10.

Example. A common model of population over time is the logistic function. There are
variations on how it is written down, but here is one general form:

𝑓(𝑥) = 𝑎𝑒𝑟𝑥

𝑏 + 𝑒𝑟𝑥 (2.4)

The numerator and denominator both contain exponential functions with the same power. If
𝑟 > 0 when 𝑥 → ∞, the denominator approaches 𝑒𝑟𝑥, since it becomes much greater than 𝑏,
and we can calculate:

lim
𝑥→∞

= 𝑎𝑒𝑟𝑥

𝑒𝑟𝑥 = 𝑎; if 𝑟 > 0

On the other hand, if 𝑟 < 0, then the numerator approaches zero as 𝑥 → ∞, and so does the
function

lim
𝑥→∞

= 0
𝑏 = 0; if 𝑟 < 0

Notice that switching the sign of 𝑟 has the same effect as switching the sign of 𝑥, since they are
multiplied. Which means that for positive 𝑟, if 𝑥 is extended to negative infinity, the function
approaches 0. This is illustrated in the second plot in ?@fig-ch2_sigmoidal_plots , which
shows two logistic functions increasing from 0 to a positive level, one with 𝑎 = 20 (solid line)
and the second with 𝑎 = 10 (dashed line). The graph of logistic functions has a characteristic
sigmoidal (S-shaped) shape, and its steepness is determined by the rate 𝑟: if 𝑟 is small, the
curve is soft, if 𝑟 is large, the graph resembles a step function.

−10 −5 0 5 10

0
5

15

x

f(
x)

A=20, B=1, r=0.5
A=10, B=1, r=1.5

(a) Logistic functions

0 2 4 6 8 10

0.
0

0.
4

0.
8

x

f(
x)

n=2, A=2
n=4, A=10

(b) Hill function

Figure 2.2: Examples of functions with sigmoidal-shaped graphs

38

2.2.4 Exercises:

For each biological model below answer the following questions in terms of the parameters in
the models, assuming all are nonnegative real numbers. 1) what is the value of the function
when the independent variable is 0? 2) what value does the function approach when the inde-
pendent variable goes to infinity? 3) verbally describe the behavior of the functions between
0 and infinity (e.g., function increases, decreases).

1. Model of number of mutations 𝑀 as a function of time 𝑡:

𝑀(𝑡) = 𝑀0 + 𝜇𝑡

2. Model of molecular concentration 𝐶 as a function of time 𝑡:

𝐶(𝑡) = 𝐶0𝑒−𝑘𝑡

3. Model of cooperative binding of ligands, with fraction of bound receptors 𝜃 as a function
of ligand concentration 𝐿:

𝜃 = 𝐿𝑛

𝐿𝑛 + 𝐾𝑑

4. Model of tree height 𝐻 (length) as a function of age 𝑎 (time):

𝐻(𝑎) = 𝑏𝑎
𝑐 + 𝑎

5. Model of concentration of a gene product 𝐺 (concentration) as a function of time 𝑡:

𝐺(𝑡) = 𝐺𝑚(1 − 𝑒−𝛼𝑡)

6. Michaelis-Menten model of enzyme kinetics, 𝑣 is reaction rate (1/time) and 𝑆 is substrate
concentration:

𝑣(𝑆) = 𝑣𝑚𝑎𝑥𝑆
𝐾𝑚 + 𝑆

7. Logistic model of population growth, 𝑃 is population size and time 𝑡:

𝑃(𝑡) = 𝐴𝑒𝑘𝑡

1 + 𝐵(𝑒𝑘𝑡 − 1)

39

2.3 Rates of biochemical reactions

Living things are dynamic, they change with time, and much of mathematical modeling in
biology is interested in describing these changes. Some quantities change fast and others slowly,
and every dynamic quantity has a rate of change, or rate for short. Usually, the quantity that
we want to track over time is the variable, and in order to describe how it changes we introduce
a rate parameter. If we are describing changes over time, all rate parameters have dimensions
with time in the denominator. As a simple example, the velocity of a physical object describes
the change in distance over time, so its dimension is [𝑣] = 𝑙𝑒𝑛𝑔𝑡ℎ/𝑡𝑖𝑚𝑒.
On the most fundamental level, the work of life is performed by molecules. The protein
hemoglobin transports oxygen in the red blood cells, while neurotransmitter molecules like
serotonin carry signals between neurons. Enzymes catalyze reactions, like those involved in
oxidizing sugar and making ATP, the energy currency of life. Various molecules bind to
DNA to turn genes on and off, while myosin proteins walk along actin fibers to create muscle
contractions.

In order to describe the activity of biological molecules, we must measure and quantify them.
However, they are so small and so numerous that it is not usually practical to count individual
molecules (although with modern experimental techniques it is sometimes possible). Instead,
biologists describe their numbers using concentrations. Concentration has dimensions of num-
ber of molecules per volume, and the units are typically molarity, or moles (≈ 6.022 ∗ 1023

molecules) per liter. Using concentrations to describe molecule rests on the assumption that
there are many molecules and they are well-mixed, or homogeneously distributed throughout
the volume of interest.

Molecular reactions are essential for biology, whether they happen inside a bacterial cell or
in the bloodstream of a human. Reaction kinetics refers to the description of the rates, or
the speed, of chemical reactions. Different reactions occur with different rates, which may
be dependent on the concentration of the reactant molecule. Consider a simple reaction of
molecule 𝐴 (called the substrate) turning into molecule 𝐵 (called the product), which is usually
written by chemists with an arrow:

𝐴 𝑘−→ 𝐵

But how fast does the reaction take place? To write down a mathematical model, we need
to define the quantities involved. First, we have the concentration of the molecule 𝐴, with
dimensions of concentration. Second, we have the rate of reaction, let us call it 𝑣, which has
dimension of concentration per time (just like velocity is length per time). How are the two
quantities related?

40

2.3.1 Constant (zeroth-order) kinetics

In some circumstances, the reaction rate 𝑣 does not depend on the concentration of the reactant
molecule 𝐴. In that case, the relationship between the rate constant 𝑘 and the actual rate 𝑣
is:

𝑣 = 𝑘

Dimensional analysis insists that the dimension of 𝑘 must be the dimension of 𝑣, or concen-
tration/time. This is known as constant, or zero-order kinetics, and it is observed at concen-
trations of 𝐴 when the reaction is at its maximum velocity: for example, ethanol metabolism
by ethanol dehydrogenase in human liver cannot proceed any faster than about 1 drink per
hour.

2.3.2 First-order kinetics

. In other conditions, it is easy to imagine that increasing the concentration of the reactant 𝐴
will speed up the rate of the reaction. A simple relationship of this type is linear:

𝑣 = 𝑘𝐴

In this case, the dimension of the rate constant 𝑘 is 1/time. This is called first-order kinetics,
and it usually describes reactions when the concentration of 𝐴 is small, and there are plenty
of free enzymes to catalyze more reactions.

2.3.3 Michaelis-Menten model of enzyme kinetics

However, if the concentration of the substrate molecule 𝐴 is neither small nor large, we need
to consider a more sophisticated model. An enzyme is a protein which catalyzes a biochemical
reaction, and it works in two steps: first it binds the substrate, at which point it can still
dissociate and float away, and then it actually catalyzes the reaction, which is usually practi-
cally irreversible (at least by this enzyme) and releases the product. The enzyme itself is not
affected or spent, so it is free to catalyze more reactions. Let denote the substrate (reactant)
molecule by 𝐴, the product molecule by 𝐵, the enzyme by 𝐸, and the complex of substrate
and enzyme 𝐴𝐸. The classic chemical scheme that describes these reactions is this:

𝐴 + 𝐸
𝑘1⇌
𝑘−1

𝐴𝐸
𝑘2−→ 𝐸 + 𝐵

41

You could write three different kinetic equations for the three different arrows in that scheme.
Michaelis and Menten used the simplifying assumptions that the binding and dissociation
happens much faster than the catalytic reaction, and based on this they were able to write down
an approximate, but extremely useful Michaelis-Menten model of an enzymatic reaction:

𝑣 = 𝑣𝑚𝑎𝑥𝐴
𝐾𝑀 + 𝐴 (2.5)

Here 𝑣 refers to the rate of the entire catalytic process, that is, the rate of production of 𝐵,
rather than any intermediate step. Here the reaction rate depends both on the concentration
of the substrate 𝐴 and on the two constants 𝑣𝑚𝑎𝑥, called the maximum reaction rate, and
the constant 𝐾𝑀 , called the Michaelis constant. They both depend on the rate constants of
the reaction, and 𝑣𝑚𝑎𝑥 also depends on the concentration of the enzyme. The details of the
derivation are beyond us for now, but you will see in the following exercises how this model
behaves for different values of 𝐴.

42

Tutorial 2: Vectors and plotting

Learning goals

In this tutorial you will learn to:

• Assign vector variables
• Perform calculations using vectors
• Use indexing with vectors
• Make plots using vectors
• Plot functions using expressions
• Add axis labels and legends to plots

Programming means arranging a number of commands in a particular order to perform a task.
Typing them one at a time into the command line is inefficient and error-prone. Instead, the
commands are written into a file called a program or script (the name depends on the type
of language; since R is a scripting language you will be writing scripts), which can be edited,
saved, copied, etc. In this course we use Quarto documents with scripts contained within code
chunks, but you can keep code in separate R script files that have extension .R. Now that you
know how to create a script, you should never type your R code into the command
line, unless you’re testing a single command to see what it does, or looking up help.

R comes equipped with many functions that correspond to standard mathematical functions.
As we saw in section ??, exp() is the exponential function that returns 𝑒 raised to the power
of the input value. Other common ones are: sqrt() returns the square root of the input value;
sin() and cos() return the sine and the cosine of the input value, respectively. Note that all
of these function names are followed by parentheses, which is a hallmark of a function (in R
as well as in mathematics). This indicates that the input value has to go there, for example
exp(5). To compute the value of 𝑒5, save it into a variable called var1 and then print out the
value on the screen, you can create the following script:

var1 <- exp(5)
print(var1)

If you run the above code chunk in R Studio you will see two things happen: a variable named
var1 appears in the Environment window (top right) with the value 148.41… and the same
value is printed out in the command line window (bottom left).

43

programming principle

In procedural programming languages (which includes R) the computer (that is, the
compiler or interpreter) evaluates the commands one line at a time, from top to bottom.
At each line, it uses variable values that are currently assigned.

For example, if one variable (var1) was assigned in terms of another (by dividing var2 by
10), and then var2 is changed later, this does not change the value of var1. This short script
illustrates this:

var2 <- 20
var1 <- var2/10
print(var1)
var2 <- 10
print(var1)

Notice the value of var1 doesn’t change, because the R interpreter reads the commands one
by one, and does not go back to re-evaluate the assignment for var1 after var2 is changed.
Learning to think in this methodical, literal manner is crucial for developing programming
skills.

Vector variables

Array variables

A variable that contains multiple numbers (or other values) is called an array. One-
dimensional arrays called vectors have values arranged in an ordered list, and these
elements can be located by their position in the list, called the index of the element.

Assigning vectors and idexing

There are several ways of creating a vector of numbers in R. The first is to put together several
numbers by listing them inside the function c():

vec<-c(pi,45,912.8, 0)
print(vec)

vec is now a vector variable that contains four different numbers. Each of those numbers can
be accessed individually by referencing its position in the vector, called the index. In the R

44

language the the index for the first number in a vector is 1, the index for the second number
is 2, etc. The index is placed in square brackets after the vector name, as follows:

print(vec[1])
print(vec[4])

Another way to generate a sequence of numbers in a particular order is to use the colon
operator, which produces a vector of integers from the first number to the last, inclusive. Here
are two examples:

vec1<-1:20
print(vec1)
vec2<-0:-20
print(vec2)

If you want to generate a sequence of numbers with a constant difference other than 1, you’re
in luck: R provides a function called seq(). It takes three inputs: the starting value, the
ending value, and the step (difference between successive elements). For example, to generate
a list of numbers starting at 20 up to 50, with a step size of 3, type the first command; to
obtain the same sequence in reverse, use the second command:

vec1<-seq(20,50,3)
print(vec1)
vec2<-seq(50,20,-3)
print(vec2)

Sometimes you want to create a vector of repeated values. For example, to create a variable
with 10 zeros you can use rep() like this:

zeros <- rep(0,10)
print(zeros)

You can repeat any value, say create a vector by repeating the number pi:

pies <- rep(pi,7)
print(pies)

You can even repeat another vector, like the vector vec that was assigned above:

vecs <- rep(vec, 5)
print(vecs)

45

subsetting or slicing vectors

It is often useful to extract only some of the vector elements, not just one but also not all.
This is called subsetting or slicing a vector, and this is especially important when handling
and analyzing large data vectors. In our simple (base R) examples, we will stick to using the
[] and putting in a vector of indices to indicate which elements we want to extract. One
can use the c() function:

vec1 <- 4:10
print(vec1)
print(vec1[c(5, 2)])

This command extracted the fifth and second element of the vector vec1, in that order. One
can also use the colon to extract a range of vector elements, for example the fourth through
the seventh element of vec2 in order:

vec2 <- -5:10
print(vec2)
print(vec2[4:7])

Finally, one can also exclude certain elements of a vector by using negative numbers in indexing.
For example, the following script assigns and prints all except for the first 4 elements of vector
vec3:

vec3 <- seq(0,1,0.1)
print(vec3)
print(vec3[-(1:4)])

using vector variables for calculations

One of the main advantages of vector variables is that one can perform operations on all of the
numbers stored in the vector at once. For instance, to multiply every element of the vector by
the same number, it’s enough to do the following:

vec<-c(pi,45,912.8, 0)
NewVec <- 2*vec
print(NewVec)

You can also perform calculations with multiple vector variables, but this requires extra care.
R can perform any arithmetic operation with two vector variables, for instance adding two
vectors results in a vector containing the sum of corresponding elements of the two vectors:

46

vec1<-0:3
vec2<-1:4
print(vec1)
print(vec2)
tot <- vec1 + vec2
print(tot)

Here each of the numbers in vec1 is added to the number in the same position in vec2 and
the result is a vector with the same number of elements.

What can go wrong

When performing arithmetic on two vectors, you need to make sure that they have the same
number of elements (length). Vector length can be obtained using the function length().
Suppose we assign vec1 and vec2 to have different lengths:

vec1<-1:3
vec2<-0:4
length(vec1)
length(vec2)

You see that vec1 has three elements, while vec2 has five, so adding them together element
by element is not possible. If you try to operate on (e.g. add) two vectors of different lengths,
R will return a warning and the result will not be what you expect:

vec1<-1:2
vec2<-0:4
print(vec1)
print(vec2)
tot <- vec1 + vec2
print(tot)

Exercises

The following R commands or scripts contain errors; your job is to fix them so they do what
each exercise asks you to do. Try figuring out the errors on your own before clicking on the
Hint box to expand it.

1. Assign a vector of three numbers to a variable

47

nums <- (3,8,16)

Hint

use the function c()

2. Assign a range of values from 1 to 10 to the vector variable vals and print out the third
value in the vector

vals <- 1:10
print[vals(3)]

Hint

print function requires (); indexing vectors requires [].

3. Assign a range of integers from 0 to 20 to the vector variable all_vals and print out
the third and nineteenth values:

all_vals <- 0:20
print(all_vals[3,9])

Hint

use the function c() to combine indices 3 and 9.

4. Multiply the vector vals by the first ten elements of vector all_vals and assign the
result to variable product and print it out:

vals <- 1:10
all_vals <- 0:20
product <- vals*all_vals
print(product)

Hint

use : to create a vector of ten indices from 1 to 10 and subset the variable all_vals

5. Add the vector vals and the odd-numbered elements (with indices 1,3,..) of the vector
all_vals and assign the result to variable total and it print out:

48

vals <- 1:10
all_vals <- 0:20
total <- vals + all_vals
print(total)

Hint

use seq() to create a vector of odd numbered indices and subset the variable all_vals

Calculations and plotting with vectors

The following chunk creates a vector variable time, then calculates a new variable quad using
time in a single operation:

time <- seq(0,10,0.2)
quad <- (time - 5)^2
print(time)
print(quad)

using vectors to plot

Certain functions in R create graphical output, for example plot() makes an image with
a plot of two vectors. These images can be embedded in a report file (like the HTML
file you are viewing) or can be saved to a file and shared separately. Some functions
create a new plot (e.g. plot()), while others can add more plots to an existing window
(e.g. lines() or points()).

using plot()

The function plot() takes the two vector variables assigned above and plots time on the
x-axis and quad on the y-axis, then adds a title to the plot

plot(time, quad, main = 'Quadratic function of time')

plot() is a versatile function that has many options. One can change the type of plot to use
continuous curves or lines, which is done with type = 'l' (NOTE this is a lower case letter
L) and add labels for the axes to replace the generic labels. You can also control line width,
color, and many other details by setting other options, for a full description type help(plot)

49

in the console or type plot in the search bar of the Help pane in the bottom right window of
RStudio.

plot(time,quad, main = 'Quadratic function of time', type = 'l', xlab='time', ylab = 'y = f(t)')

using lines() or points()

The plot() function creates a new plot window, so if you want to add another plot on top
of the first one, you have to use another function. There are two ones available: lines()
which produces continuous curves connecting the points, and points() which plots individual
symbols at every point.

cubic <- 0.2*(time-6)^3 + 4
plot(time,quad, main = 'Quadratic and cubic functions of time', type = 'l', xlab='time', ylab = 'y = f(t)')
lines(time, cubic, col = 'red')

The plot has a problem, because it doesn’t show the full extent of the cubic function. This is
because plot() automatically sets the limits window based on the variables given to it, and
calling lines() does not adjust them. You can adjust them manually by specifying the x and
y limits in the plot() function call, like this:

plot(time, quad, main = 'Quadratic and cubic functions of time', type = 'l', xlab='time', ylab = 'y = f(t)', xlim = c(0,10), ylim = c(-25, 25))
lines(time, cubic, col = 'red')

adding a legend to a plot

Having multiple graphs on the same plot strongly suggests that we need a legend to help
identify the different curves. To create a legend in R we use the legend function that will
create a little box to place on the plot and will add a label to identify each curve or symbol
used to plot different graphs. For example, this will create a legend for two different colored
curves and give the black curve the label quadratic and the red curve the label cubic and
place it in the bottom right corner:

plot(time, quad, main = 'Quadratic and cubic functions of time', type = 'l', xlab='time', ylab = 'y = f(t)', xlim = c(0,10), ylim = c(-25, 25))
lines(time, cubic, col = 'red')
legend("bottomright", legend = c('quadratic', 'cubic'), col = c('black', 'red'), lty=1)

We may want to plot one graph made up of symbols (e.g. circles) and another one as a curve,
and this needs to be reflected in the legend. The option pch=c(1,NA) specifies the first one

50

to be a symbol (circle) and the second one to have no symbol, while the option lty=c(0,1)
specifies the first one to not have a line (0) and the second one to be a continuous line (1):

plot(time, quad, main = 'Quadratic and cubic functions of time', xlab='time', ylab = 'y = f(t)', xlim = c(0,10), ylim = c(-25, 25))
lines(time, cubic, col = 'red')
legend("bottomright", legend = c('quadratic', 'cubic'), col = c('black', 'red'), pch = c(1, NA), lty = c(0, 1))

using curve()

There is another function in R for plotting graphs of functions, called curve(). It has three
basic inputs: the function expression, the lower limit of the range of x (the independent
function), and the upper limit of the range. Here is an example:

curve(x^2,0,3, xlab = 'x', ylab = 'f(x)')
curve(5*x,0,3,add=TRUE,col='red')
legend("topleft", legend = c('quadratic', 'linear'), col = c('black', 'red'), lty = 1)

Note that you can use the option add=TRUE to make sure the graph is overlaid on top of the
current one.

Once again, the second graph does not fit into the plot window so the x and y limits can be
changed by setting the options xlim and ylim in the first curve() command:

curve(x^2,0,3, xlab = 'x', ylab = 'f(x)', xlim = c(0,3), ylim = c(0,15))
curve(5*x,0,3,add=TRUE,col='red')
legend("topleft", legend = c('quadratic', 'linear'), col = c('black', 'red'), lty = 1)

What can go wrong

One of the most common issues is switching the order of the two variables in plot() or related
graphing functions. Let us switch the variables time and quad and see what happens:

plot(quad, time, main = 'NOT a quadratic function of time', type = 'l', xlab='time', ylab = 'y = f(t)')

Another common problem is trying to plot two vectors that have different lengths. This should
not be a problem if you calculated the y-variable from the x-variable, like we did above, but
what if we add one extra element to time:

time[52] <- 10.2
plot(time, quad, main = 'Quadratic function of time', type = 'l', xlab='time', ylab = 'y = f(t)')

51

Running the code results in an error you see above. To fix it, you can recalculate quad using
the new vector time:

quad <- (time - 5)^2
plot(time, quad, main = 'Quadratic function of time', type = 'l', xlab='time', ylab = 'y = f(t)')

Exercises

The following R commands or scripts contain errors; your job is to fix them so they do what
each exercise asks you to do. Try figuring out the errors on your own before clicking on the
Hint box to expand it.

1. Assign an an array of values using seq() to the vector vals. Multiply this vector by 8,
add 5 and assign the result to a vector new_vals

vals <- seq(0,5,0.1)
new_vals <- 5 + 8vals

Hint

multiplication must be specified by *

2. Assign range to be a sequence of values from 0 to 100 with step of 0.1, and calculate the
vector variable result as the square root of the vector variable range

range <- seq(0,0.1,100)
result <- sqrt(range)

Hint

check the order of inputs in function seq()

3. Assign the same two variables and plot result as a function of range

range <- seq(0,100,0.1)
result <- sqrt(range)
plot(result, range, type='l')

52

Hint

the independent variable must be the first input and the dependent variable must be the
second input of plot()

4. Plot the graph of the function 𝑓(𝑥) = (45 − 𝑥)/(4𝑥 + 3) over the range of 0 to 100 using
curve()

curve((45-x)/(4x+3), 0, 100)

Hint

multiplication must be specified by *

5. This code assigns the independent variable lig and is supposed to plot the Hill function
𝑓(𝑙𝑖𝑔) = 𝑙𝑖𝑔10/(5000 + 𝑙𝑖𝑔10) using circles and the linear function 𝑔(𝑙𝑖𝑔) = 0.1𝑙𝑖𝑔 using a
continuous line on the same plot and create a legend the describes the two plots.

lig <- seq(0,10,0.2)
f <- lig^10/(5000+lig^10)
plot(lig,f, xlab = 'lig', ylab = 'functions')
g <- 0.1*lig
plot(lig,g)
legend("bottomright", legend = c('Hill', 'linear'), col = c('black', 'red'), pch = c(1, 2), lty = c(2, 1))

Hint

the second graph should be made with lines() and color red; in legend change the ‘pch’
and ‘lty’ options.

6. Overlay two different plots of the logistic function with different values of the parameter
𝑟

time<-0:100
a<-1000
b<-50
r<-0.1
Population<-a*exp(r*time)/(b+exp(r*time))
plot(time,Population,type='l')
r<-10
lines(time,Population,col=2)

53

Hint

the vector Population needs to be reassigned using the new value of r before plotting
it.

54

3 Describing data sets

Get your facts first, and then you can distort them as much as you please.
– Rudyard Kipling, An Interview with Mark Twain

Science begins with experimental measurements, which are then verified by reproducing the
results. But no experimental result is perfectly reproducible because all are subject to random
noise, whether it is caused by unpredictable processes or is due to measurement error. Describ-
ing collections of numbers with noise is the first step to understanding the biological systems
that are being measured. In this chapter you will learn to do the following:

• calculate means and medians of a data set

• calculate variances and standard deviations

• produce histograms and interpret them

• use R to plot and analyze data sets

3.1 Mutations and their rates

All Earth-based lifeforms receive an inheritance from their parent(s): a string of deoxyribonu-
cleic acids (DNA) called the genetic sequence, or genome of an individual. The information to
produce all the necessary components to build and run the organism is encoded in the sequence
of the four different nucleotides: adenine, thymine, guanine, and cytosine (abbreviated as A,
T, G, C). Different parts of the genome play different roles; some discrete chunks called genes
contain the instructions to build proteins, the workhorses of biology. To make a protein from
a gene, the information is transcribed from DNA into messenger ribonucleic acid (mRNA),
which is then translated into a string of amino acids which constitute the protein. The genetic
code determines the translation, using three nucleic acids in DNA and RNA to represent a
single amino acid in a protein. Thus, a sequence of DNA results in a specific sequence of amino
acids, which determine the structure and function of the protein.

The above processes involve copying and transferring information. As we know from experience,
copying information inevitably means introducing errors. This is particularly important when
passing information from parent to offspring, because then an entire organism has to develop
and live based on a faulty blueprint. Changes introduced in the genome of an organism are
called mutations, and they can be caused either by errors in copying DNA when making a new

55

Figure 3.1: Different types of substitution point mutations are distinguished by their effects on
the gene products; image by Jonsta247 in public domain via Wikimedia Commons.

cell (replication) or through damage to DNA through physical means (e.g. ionizing radiation) or
chemical mechanisms (e.g. exogenous molecules that react with DNA). The simplest mutation
involve a single nucleotide and are called point mutations. A nucleotide may be deleted,
an extra nucleotide inserted, or a new one substituted instead: the three different types of
substitution mutations are shown in figure ??. Large-scale mutations may involve whole chunks
of the genome that are cut out and pasted in a different location, or copied and inserted in
another position, but they are typically much more rare than point mutations.

Mutations can have different effects on the mutant organism, although acquisition of super-
powers has not been observed. Usually, point mutations have either little observable effect or
a negative effect on the health of the mutant. A classic example is sickle-cell disease, in which
the molecules of the protein hemoglobin, responsible for carrying oxygen in the blood from the
lungs to the tissues, tends to stick together and clump, resulting in sickle-shaped red blood
cells. The disease is caused by a single substitution mutation in the gene that codes for one
of the two components of hemoglobin, called 𝛽-globin. The substitution of a single nucleotide
in the DNA sequence changes one amino acid in the protein from glutamate to valine, which
causes the proteins to aggregate. This missense}* mutation (see figure ??) is carried by a
fraction of the human population, and those who inherit the allele allele from both parents
develop the painful and sometimes deadly disease. Such mutations that are present in some
but not all of a population are called polymorphisms, to distinguish them from mutations that
occurred in evolutionary lineages and differentiate species from each other.

56

One of the central questions of evolutionary biology is how frequently do mutations occur?
Since mutations are generally undesirable, most living things have developed ways to minimize
the frequency of errors in copying DNA, and to repair DNA damage. But although mutations
are rare, they occur spontaneously in all organisms because molecular processes such as copying
a DNA molecule are subject to random noise arising from thermal motion. So mutations are
fundamentally a random process and we need to use descriptive statistics to analyze data with
inherent randomness.

3.2 Describing data sets

3.2.1 central value of a data set

A data set is a collection of measurements. These measurements can come from many kinds of
sources, and can represent all sorts of quantities. One big distinction is between numerical and
categorical data sets. Numerical data sets contain numbers, either integers or real numbers.
Some examples: number of individuals in a population, length, blood pressure, concentration.
Categorical data sets may contain numbers, symbols, or words, limited to a discrete, usually
small, number of values. The word categorical is used because this kind of data corresponds to
categories or states of the subject of the experiment. Some examples: genomic classification of
an individual on the basis of one locus (e.g. wild type or mutant), the state of an ion channel
(open or closed), the stage of a cell in the cell cycle.

A data set contains more than one measurement, the number of them is called the size of the
data set and is usually denoted by the letter 𝑛. To describe a data set numerically, one can
use numbers called statistics (not to be confused with the branch of science of the same name).
The most common statistics aim to describe the central value of the data set to represent a
typical measurement. If you order all of the measurements from highest to lowest and then
take the the middle value, you have found the median (if there is an even number of values,
take the average between the middle two). Precisely half of the data values are less than
the median and the other half are greater, so it represents the true “middle” value of the
measurement. Note that the median can be calculated either for numerical or categorical data,
as long as the categories can be ordered in some fashion.

The value that occurs most frequently in the data set is called its mode. For some data sets,
particularly those which are symmetric, the mode coincides with the mean (see next paragraph)
and the median, but for many others it is distinct. The mode is the most visual of the three
statistics, as it can be picked out from the histogram plot of a data set (which is described in
subsection 3.2.3) as the value corresponding to the maximum frequency. The mode can also
be used for both categorical and numerical data.

The average or mean of a data set is the sum of all the values divided by the number of values.
It is also called the expected value (particularly in the context of probability, which we will
discuss later) because it allows to simply predict the sum of a large number of measurements

57

with a given mean, by multiplying the mean by the number. The mean can be calculated only
for a numerical data set, since we cannot add non-numerical values.

Definition

The mean of a data set 𝑋, also known as the average or the arithmetic mean is usually
indicated with a bar over the variable symbol, and defined as the sum of the values
divided by the number of values:

�̄� = 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖 (3.1)

The mean, unlike the median, is not the middle value of the data set, instead it represents
the center of mass of the measured values [?]. Another way of thinking of the mean is as
a weighted sum of the values in the data set. The weights represent the frequency of
occurrence of each numeric value in the data set, which we will further discuss in subsection
3.2.3.

The mean is the most frequently used statistic, but it is not always interpreted correctly. Very
commonly the mean is reported as the most representative value of a data set, but that is
often misleading. Here are at least two situations in which the mean can be tricky: 1) data
sets with a small number of discrete values; 2) data sets with outliers, or isolated numbers
very far from the mean.

Examples of misleading means. Mean quantities for data sets with a few quantities are
not the typical value, such as in the number of children born in a year per individual, also
known as the birth rate. The birth rate per year in 2013 for both the United States and
Russia is 1.3% per person, but you will have to look for a long time to find any individual who
gave birth to 1.3% of a child. While this point may be obvious, it is often overlooked when
interpreting mean values.

Outliers are another source of trouble for means. For example, a single individual (let’s call
him or her B.G.) with a wealth of $50 billion moves into a town of 1000 households with
average wealth of $100,000. Although none of the original residents’ assets have changed, the
mean wealth of the town improves dramatically, as you can calculate in one of the exercises at
the end of the chapter. One can site the improved per capita (per individual) in the town as
evidence of economic growth, but that is obviously misleading. In cases with such dramatic
outliers, the median is more informative as representation of a typical value of the data set.

3.2.2 Exercises

For the (small) data sets given below, calculate the mean and the median (by hand or using
a calculator) and compare the two measures of the center.

58

1. Data set of the population of the city of Chicago (in millions) in the last 4 census years
(2010, 2000, 1990, 1980): {2.7, 2.9, 2.8, 3.0}.

2. Data set of the numbers of the fish blacknose dace (Rhinichthys atratulus) collected in 6
different streams in the Rock Creek watershed in Maryland: {76, 102, 12, 55, 93, 98}.

3. Data set of tuberculosis incidence rates (per 100,000 people) in the 5 largest metropolitan
areas in the US in 2012: {5.2, 6.6, 3.2, 5.5, 4.5}.

4. Data set of ages of mothers at birth for five individuals: {19, 20, 22, 32, 39}.

5. Data set of ages of fathers at birth for five individuals: {22, 23, 25, 36, 40}.

6. Data set of the number of new mutations found on maternal chromosomes for five indi-
viduals: {9, 10, 11, 26, 15}.

7. Data set of the number of new mutations found on paternal chromosomes for five indi-
viduals: {39, 43, 51, 53, 91}.

8. Consider the hypothetical town with 1000 households with mean and median wealth of
$100,000 and one person with assets for $50 billion. Calculate the mean value of the
combined data set, and compare it to the new median value.

9. Suppose you’d like to add a new observation to a data set; e.g. the 6-th largest metropoli-
tan area (Philadelphia) to the tuberculosis incidence data set, which is 3.0. Calculate
the mean of the 6-values data set, without using the 5 values in the original data set,
but only using the mean of the 5-value data set and the new value. Generalize this to
calculating the sample mean for any 𝑛-value data set, given the mean of the 𝑛−1 values,
plus one new value.

3.2.3 spread of a data set

The center of a data set is obviously important, but so is the spread around the center. Some-
times the spread is caused by noise or error, for example in a data set of repeated measurements
of the same variable under the same conditions. Other times the variance is due to real changes
in the system, or due to inherent randomness of the system, and the size of the spread, as well
as the shape of the histogram are important for understanding the mechanism. The simplest
way to describe the spread of a numerical data set is to look at the difference between the
maximum and minimum values, called the range. However, it is obviously influenced by out-
liers, since the extreme values are used. To describe the typical spread, we need to use all the
values in the data set, and see how far each one is from the center, measured by the mean.

There is a problem with the naive approach: if we just add up all the differences of data values
from the mean, the positives will cancel the negatives, and we’ll get an artificially low spread.
One way to correct this is to take the absolute value of the differences before adding them up.
However, for somewhat deep mathematical reasons, the standard measure of spread uses not

59

absolute values, but squares of the differences, and then divides that sum not by the number
of data points 𝑛 but by 𝑛 − 1.

Definition

The variance of a data set 𝑋 with 𝑛 values is the sum of the squared differences of each
value of the variable from the mean, divided by 𝑛 − 1:

𝑉 𝑎𝑟(𝑋) = 1
𝑛 − 1

𝑛
∑
𝑖=1

(�̄� − 𝑥𝑖)2 (3.2)

The variance is a sum of square differences, so its dimension is the square of the dimensions of
the measurements in 𝑋. In order to obtain a measure of the spread comparable to the values
of 𝑋, we take the square root of variance and call it the standard deviation of the data set
𝑋:

𝜎(𝑋) = √ 1
𝑛 − 1

𝑛
∑
𝑖=1

(�̄� − 𝑥𝑖)2 (3.3)

Just as the mean is a weighted average of all of the values in the data set, the variance is a
weighted average of all the squared deviations of the data from the mean.

3.2.4 Exercises:

For the (small) data sets below, calculate the range, variance, and standard deviation (by hand
or using a calculator). Compare the range and the standard deviation for each case: which
one is larger? by how much?

1. Data set of the population of the city of Chicago (in millions) in the last 4 census years
(2010, 2000, 1990, 1980): {2.7, 2.9, 2.8, 3.0}.

2. Data set of the numbers of the fish blacknose dace (Rhinichthys atratulus) collected in 6
different streams in the Rock Creek watershed in Maryland: {76, 102, 12, 55, 93, 98}.

3. Data set of tuberculosis incidence rates (per 100,000 people) in the 5 largest metropolitan
areas in the US in 2012: {5.2, 6.6, 3.2, 5.5, 4.5}.

4. Data set of ages of mothers at birth for five individuals: {19, 20, 22, 32, 39}.

5. Data set of ages of fathers at birth for five individuals: {22, 23, 25, 36, 40}.

6. Data set of the number of new mutations found on maternal chromosomes for five indi-
viduals: {9, 10, 11, 26, 15}.

60

7. Data set of the number of new mutations found on paternal chromosomes for five indi-
viduals: {39, 43, 51, 53, 91}.

8. Consider the hypothetical town with 1000 households with mean and median wealth of
$100,000 and one person with assets for $50 billion. Calculate the mean value of the
combined data set, and compare it to the new median value.

9. (harder) Suppose that a data set has a fixed range (e.g. all values have to lie between
0 and 1). What is the greatest possible standard deviation for any data set within the
range? Hint: think about how to place the points as far from the mean as possible. How
do the data sets above relate to your prediction?}

3.2.5 describing data sets in graphs

Data sets can be presented visually to indicate the frequency of different values. This can be
done in a number of ways, depending on the kind of data set. For a data set with only a
few values, e.g. a categorical data set, a good way to represent it is with a pie chart. Each
category is represented by a slice of the pie with the area of the same share of the pie as the
fraction of the data set in the category. There is some evidence, however, that pie charts can
be misleading to the eye, so R does not recommend using them.

For a numerical data set it is useful to plot the frequencies of a range of values, which is called
a histogram. Its independent axis has the values of the data variable, and the dependent axis
has the frequency of those values. If the data set consists of real numbers that range across
an interval, that interval is divided into subintervals (usually of equal size), called bins, and
the number of measurements in each bin is indicated on the y-axis. In order to be visually
informative, there should be a reasonable number (usually no more than a few dozen, although
it varies) of bins. The most frequent measurements are represented as the highest bars or points
on the histogram. Histograms can denote either the counts of measurements in each bin, or
to show the fraction of the total number of measurements in each bin. The only difference
between those two kinds of histogram is the scale of the y-axis, and, confusingly, both can be
called frequencies.

A histogram of the measured lengths of the bacterium Bacillus subtilis is shown in figure ??.
The data set was measured in increments in half a micron, with numbers varying between 1.5
and 4.5 microns. The histogram shows that the most common measurement (the mode) is 2
𝜇𝑚. Adding up all of the frequencies in the histogram tells us that there are approximately
200 total values in the data set. This allows us to find the median value by counting the
frequencies of the first few bins until we get to 100 (the median point), which resides in the
bin for 2.5 𝜇𝑚. It is a little bit more difficult to estimate the mean, but it should be clear that
the center of mass of the histogram is also near 2.5 (it is actually 2.49). Finally, the hardest
task is estimating the spread of the data set, such as the the standard deviation, based on
the histogram. The range of the data set is 4.5 − 1.5 = 3, so we know for sure that it is less
than 1.5. The histogram shows that the deviations from the mean value of 2.5 range from 2

61

Bacterial lengths

length (microns)

F
re

qu
en

cy

1.5 2.0 2.5 3.0 3.5 4.0 4.5
0

10
30

50
70

Figure 3.2: Length of bacteria Bacillus subtilis measured under the microscope as discrete
values with step of 0.5; data from citep{watkins-intro-stats}

(rarely) to 0.5 (most prevalent). This should give you an idea that the weighted average of the
deviations is less than 1. Indeed, the correct standard deviation is about 0.67.

There are different ways of plotting data sets that have more than one variable. For instance,
a data set measured over time is called a time series. If the values are plotted with the
corresponding times on the x-axis, then it is called a time plot. This is useful to show the
changes of the values of your variable over time. If the data set doesn’t undergo any significant
changes over time, it makes more sense to represent it as a pie chart or histogram. More
generally, one may plot two variables measured together on a single plot, which is called a
scatterplot. We will explore such plots and the relationships between two measured variables
in chapter 4.

3.2.6 Exercises

Answer the following questions, based on the histograms in figure ?? (mutation data) and in
figure ?? (heart rate data).

1. How many people in the mutation data have fathers either younger than 20 or older than
40? How many have more than 80 new mutations?

2. Estimate the median and mean of the two variables in the mutation data set.

3. State the range of each data set, and estimate the standard deviation of the two variables
in the mutation data set.

4. How many people in the heart rate data have heart rates greater than 80 bpm? How
many have body temperature less that 97 F?

62

5. Estimate the median and mean of the two variables in the heart rate data set.

6. State the range of each data set, and estimate the standard deviation of the two variables
in the heart rate data set.

my_data<-read.table('data/HR_temp.txt', header=TRUE)
hist(my_data$HR,col='gray',main='Heart rate data', xlab='heart rate (bpm)')
hist(my_data$Temp,col='gray',main='Body temperature data', xlab= 'temperature (F)')

Heart rate data

heart rate (bpm)

F
re

qu
en

cy

55 60 65 70 75 80 85 90

0
5

10
15

20
25

30

Figure 3.3: Histograms of heart rates and body temperatures

Body temperature data

temperature (F)

F
re

qu
en

cy

96 97 98 99 100 101

0
5

10
20

30

Figure 3.4: Histograms of heart rates and body temperatures

63

Age of father

age (years)

F
re

qu
en

cy

15 20 25 30 35 40 45 50

0
5

10
15

20
25

Figure 3.5: Histograms of paternal ages and the number of new mutations from 73 families;
data from citep{kong_rate_2012}

Number of new mutations

de novo mutations

F
re

qu
en

cy

40 60 80 100 120

0
5

10
15

20
25

Figure 3.6: Histograms of paternal ages and the number of new mutations from 73 families;
data from citep{kong_rate_2012}

64

Tutorial 3: Data frames and descriptive
statistics

Learning goals

In this tutorial you will learn to:

• Load data into data frames
• Compute statistics for different variables
• Visualize data sets using histograms
• Visualize data sets using box plots

Working with data frames

R is first and foremost a programming language for working with data. To do this, we first
need to load the data into the R environment so R can perform actions on it.

Data comes in many different formats, for example a formatted text file, an Excel spreadsheet,
or a database file like SQL. We will stick with simple formatted text files, which consist of
lines that have a common format. So each line has a certain number of values (numeric, text,
etc.) that are separated by a delimiter, which is a special character that is used only to divide
values, for example commas in csv files (comma separated variables) and tabs in tsv files (tab
separated variables).

loading data from a file

The first way to load data is to read in a text file that is saved locally on your computer. In
the script below, the function read.csv() loads the file called HR_data_combined.csv with
the option header = TRUE which lets the function know that the first line of the file contains
the names of the variables, while the rest contains the values. The information is assigned to
a new object named heart_rates, which is a data frame.

heart_rates <- read.csv(file = "https://raw.githubusercontent.com/dkon1/quant_life_quarto/master/data/HR_data_combined.csv")

65

data frame

A data frame is an object in R environment that contains multiple variables with
different names. These variables can be accessed by using the name of the data frame,
followed by $ and then the variable name, e.g. df2$var1 refers to variable named var1
in data frame df2.

To see the names of the variables and the first few rows of values, you can use the function
head(). You see that this data set contains five variables: four heart rate measurements
reported by students in BIOS 20151 (in beats per minute) and the year of the course. The
values for the variables are arranged in columns, and the first row of the file contains the names
of the variables: Rest1, Ex1, Rest2, Ex2, and Year.

head(heart_rates)

NOTE: The data file has to be saved into the same folder as the .Rmd file for this to work, or
else a file path has to be specified to provide the address of the saved file.

loading data from a package

R users create and share convenient collections of code or data called packages. You can
also load data from a package, e.g. palmerpenguins, which is a data set of observations
on penguins recorded at the Palmer research station (see explanation of the data set here:
https://allisonhorst.github.io/palmerpenguins/).

To install this (or any other) package in R Studio, go to the Packages tab in the lower right win-
dow page, click Install and type palmerpenguins. We will use the data set called penguins
that contains 8 variables, as you can see below in the output of the head() function:

library(palmerpenguins)
head(penguins)

descriptive statistics

Descriptive statistics are used to summarize a data set, in particular the two key measures are
of the center of the values and of the spread of the values. The most common measures of
center are the mean and the median, and the important measures of spread are the variance,
the standard deviation, and the range of the data set.

One can calculate basic descriptive statistics as follows, note the use of the function paste()
to combine strings of text with numeric values to make the output easier to understand:

66

paste("The mean first resting heart rate is: ", mean(heart_rates$Rest1))
paste("The mean bill length is: ", mean(penguins$bill_length_mm))

There are two issues with the output of the above code. The first line correctly outputs the
mean value, but you can see that it prints a whole lot of digits, making the output unnecessarily
messy. There are several ways of rectifying this issue. One of them is to set the number of digits
that R outputs on the screen using the function options(digits = 5) to limit the number
of digits and then using print() after the cat() function to print the correctly formatted
output; the only issue is the pesky [1] that gets added to the output:

options(digits = 5)
cat("The mean first resting heart rate is: ")
print(mean(heart_rates$Rest1))

The second and larger issue is that the mean of the bill length returns NA, which means that
there are values missing in that data vector (which you could see when we printed out the head
of the data). The option na.rm in the function mean() tells it to ignore any missing values:

cat("The mean bill length is: ")
print(mean(penguins$bill_length_mm, na.rm = TRUE))

Here are examples of median values:

cat("The median first exercise heart rate is: ")
print(median(heart_rates$Ex1))
cat("The median flipper length is: ")
print(median(penguins$flipper_length_mm, na.rm = TRUE))

Here are examples of variances:

cat("The variance of the second exercise heart rate is: ")
print(var(heart_rates$Ex2))
cat("The variance of bill depth is: ")
print(var(penguins$bill_depth_mm, na.rm = TRUE))

Here are examples of standard deviations (square root of variance):

cat("The standard deviation of the second exercise heart rate is: ")
print(sd(heart_rates$Ex2))
cat("The standard deviation of bill depth is: ")
print(sd(penguins$bill_depth_mm, na.rm = TRUE))

67

Here are examples of range (the minimum and maximum values of the data vector):

cat("The range of the second resting heart rate is: ")
print(range(heart_rates$Rest2))
cat("The range of penguin body mass is: ")
print(range(penguins$body_mass_g, na.rm = TRUE))

What can go wrong

When reading in files, either from your computer hard drive or from a URL, any mistake in
the file name or the path (directory) will result in an error that looks like this:

heart_rates <- read.csv(file = "HR_data_combine.csv", header = TRUE)

Another common mistake is using a variable name without the data frame. For example, if
you try to refer to the variable Rest1 without the data frame, R will not know what to do:

mean(Rest1)

A different error is using a data frame as a variable. Since it contains multiple variables, we
cannot calculate descriptive statistics on a whole data frame:

mean(heart_rates)

Exercises

The following R commands or scripts contain errors; your job is to fix them so they do what
each exercise asks you to do. Try figuring out the errors on your own before clicking on the
Hint box to expand it.

1. Calculate the mean of the second resting heart rate of the first 30 individuals (in the
data frame heart_rates and variable Rest2):

mean(Rest2[30])

Hint

Need to specify the data frame; use : to create a vector of indices from 1 to 30.

68

2. Calculate the range of penguin flipper lengths, assign it to a variable ran and print the
maximum value:

ran <- range(penguins$flipper_length_mm)
print(range)

Hint

Use option na.rm=TRUE to get rid of NAs; print the second element of the variable ran
to show the minimum.

3. Calculate the ratios of all the bill lengths to the bill depth and print the mean and
standard deviations of this ratio:

len_over_dep <- penguins$bill_length_mm/bill_depth_mm
print(mean(len_over_dep))
print(sd(len_over_dep))

Hint

Cannot use variable name without the data frame; has to have the format df$Var; in
mean() and sd() use option na.rm=TRUE to get rid of NAs

3. Use plot() to make a scatterplot of the first exercise heart rate as function of the first
resting heart rate from the data frame heart_rates

plot(Ex1, Rest1, main = 'Exercise vs resting heart rates', xlab= 'rate (bpm)', ylab= 'rate (bpm)')

Hint

Need to use the data frame name; switch the order of the variables in plot

Visualizing data sets

A picture is worth a lot of words, and a plot of data offers much more information than the
basic descriptive statistics. A histogram offers a convenient visualization of a single variable
data set.

69

histogram

A histogram is a plot of counts or frequencies of different values in a data vector, divided
into bins. The x-axis typically shows the values of the variable, and the y-axis shows the
counts, or frequencies, of the data in each bin.

R has a histogram function hist(), which does a passable job of representing the distribution
of a variable such as flipper length or bill depth. The two histograms below provide visual
descriptions of the two data sets:

hist(penguins$flipper_length_mm, main = 'Histogram of penguin flipper length', xlab = 'flipper length (mm)')
hist(penguins$bill_depth_mm, main = 'Histogram of penguin bill depth', xlab = 'flipper depth (mm)')

Box plots

Sometimes a histogram is a bit too involved, especially when one wants a quick visual com-
parison of two variables. Here are example box plots for the first resting rate and the first
exercise heart rate data sets:

boxplot(heart_rates$Rest1, main = "Resting heart rate 1", ylab = 'rate (beats per minute)')
boxplot(heart_rates$Ex1, main = "Exercise heart rate 1", ylab = 'rate (beats per minute)')

The boxes in these plots extend from the first quartile to the third quartile, with the line in the
middle being the median. Thus the middle half of the data set is contained within the boxes.
The “whiskers” extend from the box to another 1.5 times the width of the box (or the min
and the max, if they are closer), but this can be changed by setting the range option. Any
points outside the whiskers are considered “outliers” and are shown as individual points.

The boxplot() function, like all others, has many options. They allow us to plot two or more
box plots together, using the options at and names, for direct visual comparison of two data
sets:

boxplot(heart_rates$Rest1, heart_rates$Ex1, main = "Heart rates comparison", ylab = 'rate (beats per minute)', names = c('resting', 'exercise'), at = 1:2)

If you want to visualize the effect of a categorical variable on the distribution of a numeric
variable, you can use the convenient expression notation in the first input of boxplot, as you
can see below:

boxplot(bill_length_mm ~ species, data = penguins, main = "Bill length for different species", ylab = 'length (mm)')

70

The expression bill_length_mm ~ species tells boxplot() to plot the distributions of
bill_length_mm as a function of species, whose values are shown on the x-axis. The option
data specifies the data frame, so you don’t need to put the data frame with the variables.

Exercises

The following R commands or scripts contain errors; your job is to fix them so they do what
each exercise asks you to do. Try figuring out the errors on your own before clicking on the
Hint box to expand it.

1. Plot a histogram of body masses of all the penguins in the penguins data frame

hist(body_mass_g, data = penguins)

Hint

data = option doesn’t work in function hist(), need to use dataframe and variable name,
e.g.df$Var

2. Calculate the ratio of the penguin bill lengths to the bill depths and plot their histogram

len_over_dep <- penguins$bill_length_mm/bill_depth_mm
hist(len_over_dep)

Hint

Cannot use variable name without the data frame; has to have the format df$Var

3. Produce box plots of the second resting heart rates (variable Rest2 for different years:

boxplot(Year ~ Rest2, data=heart_rates)

Hint

Check the order of variables in the expression: it needs to have the format of Y ~ X

71

4 Random variables and distributions

What is there then that can be taken as true? Perhaps only this one thing, that
nothing at all is certain. –Rene Descartes

Mathematical models can be divided into deterministic and stochastic models. Deterministic
models assume that the future can be perfectly predicted based on complete information of
the past. Stochastic models instead assume that even perfect knowledge of the past does not
allow one to predict the future with certainty.

Stochastic models may not sound very promising: after all, we want to make predictions, and
randomness says that predictions are impossible! However, the word “random” in mathematics
doesn’t mean “completely unpredictable” or “without rules,” as it does in common usage. It
means that we can make probabilistic predictions, e.g. compute what fraction of molecules
will diffuse from one place to another, or what fraction of genes mutate in one generation - we
just can’t make a definite prediction for each individual molecule or gene. Biological processes
are so complex and are subject to so much environmental noise, that stochastic models are
absolutely essential for our understanding of many living systems. Here is what you will learn
to do in this chapter:

• define probability in terms of outcomes and events

• know what is a random variable and its distribution

• compute means and variances of distributions

• use the binomial distribution to model strings of binary trials

• generate random numbers in R

4.1 Random variables and distributions

4.1.1 definition of probability

In this section we will develop the terminology used in the mathematical study of randomness
called probability. This begins with a random experiment which is a very broad term that can
describe any natural or theoretical process whose outcome cannot be predicted with certainty.
If the outcomes are numeric, they may be discrete (can be counted by integers) or continuous

72

(corresponding to real numbers); they may also be categorical, meaning that they do not have
a numeric meaning, like eye color. We will stick to experiments that have discrete outcomes in
this chapter, but many important experiments produce continuous outcomes. The first step
for studying a random process is to describe all of the outcomes it can produce:

Definition

The collection of all possible outcomes of an experiment is called its sample space Ω. An
event is a subset of the sample space, which means an event may contain one or more
experimental outcomes.

Figure 4.1: An illustration of the sample space of all people with two events: tall people and
those who like tea.

Example. You can ask a person two questions: how tall are you (and classify them either as
short or tall) and do you like tea (yes or no), and you’ve performed a random experiment. The
randomness comes not from the answers (assuming the person doesn’t randomly lie) but from
the selection of the respondent. We will discuss randomly selecting a sample from a population
in the next chapter. This random experiment has four outcomes: tall person who likes tea,
tall person who does not like tea, short person who likes tea, and short person who does not
like tea. This sample space and events is illustrated in figure ?? with a Venn diagram, which
uses geometric shapes as representations of events as subsets of the entire sample space. These
outcomes can be grouped into events by one of the responses: e.g. tall person (𝐴) or person
who doesn’t like tea (−𝐵).

Example. A random experiment with two outcomes, called a Bernoulli trial (after the famous

73

Swiss mathematician), can describe a variety of situations: a coin toss (heads or tails), a
competition with two outcomes (win or loss), the allele of a gene (normal or mutant). The
sample space for a single Bernoulli trial consists of just two outcomes: {𝐻, 𝑇 } (for a coin
toss). If the experiment is performed repeatedly, the sample space gets more complicated. For
two Bernoulli trials there are four different outcomes {𝐻𝐻, 𝐻𝑇 , 𝑇 𝐻, 𝑇 𝑇 }. One can define
different events for this sample space: the event of getting two heads in two tosses contains
one outcome: {𝐻𝐻}, the event of getting a single head contains two: {𝑇 𝐻, 𝐻𝑇 }.
In order to to describe the composition of a sample space, we need to define the word probability
[?]. While it is familiar to everyone from everyday usage, it is difficult to define without using
other similar words, such as likelihood or plausibility, which are also in need of definition. It
is accepted that something with a high probability happens often, while something with a
low frequency is seldom observed. The other notion is that probability can range between
0 (meaning something that never occurs) and 1 (something that occurs every time). These
notions lead to the commonly accepted definition:

Definition

The probability of an outcome or event in the sample space of a random experiment is
the fraction of experiments with this outcome out of many repeated experiments.

This definition is at the heart of the frequentist view of probability, due to the underlying
assumption that the experiment can be repeated as many times as necessary to observe the
frequency of outcomes. There is an alternative view that focuses on what is previously known
about the experiment (or about systems that produce that kind of experiment) that is called
the Bayesian view:

Definition

The probability of an outcome or event in the sample space of a random experiment is
the degree of certainty or belief that this outcome will occur based on prior experience.

We will investigate the Bayesian approach in chapter 12. Most of traditional probability and
classical statistics is based on the frequentist view, as it grew out of attempts to understand
games of chance, like cards and dice, which can be easily repeated, or simple experiments like
those in agriculture, where many plots can be planted and observed. These easily repeatable
simple experiments can be described with mathematical distributions that we will describe in
this chapter. However, many contemporary research problems are not so easily repeated, and
often require a Bayesian approach that does not yield to neat mathematical description and
can be addressed using computation.

74

4.1.2 axioms of probability

One we have defined the probability of an outcome, one can calculate the probability of a
collection of outcomes according to rules that ensure the results are self-consistent. These
rules are called the axioms of probability:

Definition

The probability 𝑃(𝐴) of an event 𝐴 in a sample space Ω is a number between 0 and 1,
which obeys the following rules, called the axioms of probability:

• 𝑃(Ω) = 1
• 𝑃(∅) = 0
• 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃 (𝐵) − 𝑃(𝐴 ∩ 𝐵)

Let us define some notation for sets: 𝐴 ∪ 𝐵 is called the union of two sets, which contains all
outcomes that belong to either 𝐴 or 𝐵, this is equivalent to the logical OR operator because it
is true if either A or B is true. 𝐴 ∩ 𝐵 is called the intersection of two sets, which contains all
outcomes that are in both 𝐴 and 𝐵, this is is equivalent to the logical AND operator because it
is true if both A and B are true. The ∅ denotes the empty set. Any event 𝐴 has its complement,
denoted −𝐴, which contains all outcomes of Ω which are not in 𝐴.

Applying them to the sample space and events in Figure 4.5, the union of the two sets 𝐴 ∪ 𝐵
are all people who are either tall or like tea, the intersection of the two sets 𝐴 ∩ 𝐵 are all the
tall people who like tea, and the intersection of the first set with the complement of the second
𝐴 ∪ −𝐵 are all tall people who do not like tea.

Figure 4.2: Intersection of A
and B

Figure 4.3: Union of A and B Figure 4.4: Intersection of A
with -B

Figure 4.5: Illustration of set combinations

The first two axioms connect easily with our intuition about probability: the first axiom says
that the probability of some outcome from the sample space occurring is 1, while the second
says that the probability of nothing in the sample space occurring is 0. The intuition behind
axiom three is less transparent, but it can be see in a Venn diagram of two subsets 𝐴 and 𝐵
of the larger set Ω, as in Figure 4.5. Compare the size of the union of 𝐴 and 𝐵 and the sum

75

of the sizes of sets 𝐴 and 𝐵 separately, and you will see that the intersection 𝐴 ∩ 𝐵 occurs in
both 𝐴 and 𝐵, but is only counted once in the union. This is why it needs to be subtracted
from the sum of 𝑃 (𝐴) and 𝑃(𝐵).
There are several useful rules that immediately follow from the axioms. First, if two events are
mutually exclusive, meaning their intersection is empty (𝐴 ∩ 𝐵 = ∅), then the probability of
either of them happening is the sum of their respective probabilities: 𝑃(𝐴∪𝐵) = 𝑃(𝐴)+𝑃(𝐵)
(from axiom 3). Further, since an event 𝐴 and its complement −𝐴 are mutually exclusive,
their union is the entire sample space Ω: 𝑃(𝐴) + 𝑃(−𝐴) = 𝑃(𝐴 ∪ −𝐴) = 𝑃(Ω) = 1, therefore
𝑃(𝐴) = 1 − 𝑃 (−𝐴).
Example. Assume one is using a fair coin, so the probability of a single head and a single
tail is 1/2. The probability of getting two heads in a row is 1/4, because exactly half of those
coins that come up heads once will come up heads again. In fact, the probability of getting
any particular sequence of two coin toss results is 1/4. Here are some examples of what we
can calculate:

• the probability of getting one head of out of two tosses is 1 − 1/4 − 1/4 = 1/2 (by the
complement rule).

• the probability of not getting two heads is 1 − 1/4 = 3/4 (by the complement rule).
• the probability of getting either 0, 1, or 2 heads is 1 (by axiom 1).
• the probability of getting three heads is 0 (since this event is not in the sample space).

Example. Suppose one is testing people for a mutation which has the probability (prevalence)
of 0.2 in the population, so for each person there are two possible outcomes: normal or mutant.
The probability of drawing two mutants in a row is 0.2 ∗ 0.2 = 0.04 by the same argument as
above; the probability of drawing two normal people is 0.8 ∗ 0.8 = 0.64. Based on this, we can
calculate the following

• the probability of one mutant of out two people is 1 − 0.04 − 0.64 = 0.32 (by the
complement rule).

• the probability of not having two mutants is 1 − 0.04 = 0.96 (by the complement rule).
• the probability of either 0, 1, or 2 mutants is 1 (by axiom 1).
• the probability of getting three mutants is 0 (since this event is not in the sample space).

Example (Denny and Gaines 2002) Sarcastic fringeheads are tropical ocean fish that engage
in aggressive mouth-wrestling matches for their rocky residences. Let us treat each match as
a stochastic experiment with two outcomes: win or loss. Then the sample space is equivalent
to our coin-tossing experiment, e.g. for two matches the sample space is {𝑊𝑊, 𝑊𝐿, 𝐿𝑊, 𝐿𝐿}.
However, the probability distribution may different, for example if a particular fringehead wins
3/4 of its matches, then the probability distribution would be: 𝑃({𝑊𝑊}) = 9/16, 𝑃({𝐿𝑊}) =
𝑃({𝑊𝐿}) = 3/16, and 𝑃({𝐿𝐿}) = 1/16. Thus, the same sample space may have different
probability distributions defined on it.

76

4.1.3 random variables

The outcomes of experiments may be expressed in numbers or words, but we generally need
numbers in order to report and analyze results. One can describe this mathematically as
a function (recall its definition from section 2.2) that assigns numbers to random outcomes
(Feller, n.d.). In practice, a random variable describes the measurement that one makes to
describe the outcomes of a random experiment.

Definition

A random variable is a number or category associated to each outcome in a sample space
Ω. This association has to follow the rules of a function as defined in chapter 2.

Example. Define the random variable to be the number of heads out of two coin tosses. This
random variable will return numbers 0, 1, or 2, corresponding to different events. The random
variable of the number of mutants out of two people (assuming there are only two outcomes,
mutant and normal) has the same set of values. This random variable is a function on the
sample space because it returns a unique value for each outcome.

Example. (Denny and Gaines 2002) Suppose that our sarcastic fringehead, upon losing a
wrestling match, has to search for another home for three hours. Then we can define the
random variable of time wasted over two wrestling matches, which can be either 0, 3, or 6
hours, depending on the events defined above. Once again, this is a function because there is
an unambiguous number associated with each outcome.

A random variable has a set of possible values, and each of those values may come up more
or less frequently in an random experiment. The frequency of each measurement corresponds
to the probability of the outcomes in the sample space that produce that particular value of
the random variable. One can describe the behavior of the random variable in terms of the
collection of the probabilities of its outcomes.

Note

The probability of a random variable 𝑋 taking some value 𝑎, written as 𝑃(𝑋 = 𝑎), but
usually simplified to 𝑃(𝑎) is the probability of the event corresponding to the value 𝑎
of the random variable. This function 𝑃(𝑎) is called the probability distribution of the
random variable 𝑋.

One important property of probability distribution functions for a discrete random variable is
that all of its values have to add up to 1:

𝑁
∑
𝑖=1

𝑃(𝑎𝑖) = 1

77

The graph of a probability distribution function lies above zero because all probabilities are
between 0 and 1. The graph of a probability distribution is very similar to a histogram, in that
it represents the frequency of occurrence of each value of the random variable. A histogram
of a variable from a data set can be thought is an approximation of the true probability
distribution based on the sample. For a large sample size, the histogram approaches the graph
of the probability distribution function, something which we will discuss in chapter 9.

Example. Assuming that each coin toss has probability 1/2 of resulting in heads, the probabil-
ity distribution function for the number of heads out of two coin tosses is 𝑃(0) = 1/4; 𝑃 (1) =
1/2; 𝑃 (2) = 1/4 (as we computed in the example in the previous section). Note that the
probabilities add up to 1, as they should.

Example. For the random variable of the number of mutants out of two people, for mutation
prevalence of 0.2, the probability distribution function is 𝑃(0) = 0.64; 𝑃 (1) = 0.32; 𝑃 (2) =
0.04 (as we computed in the example in the previous section). Note that the probabilities add
up to 1, as they should.

Example. For the time wasted by a fringehead, the distribution is 𝑃(0) = 9/16; 𝑃 (3) =
3/16; 𝑃 (6) = 1/16. Note that other values of the random variable have probability 0, because
they correspond to the empty set in sample space.

4.1.4 expectation of random variables

Note

The expected value (or mean) of a discrete random variable 𝑋 with probability distribution
𝑃(𝑋) is defined as:

𝐸(𝑋) = 𝜇𝑋 =
𝑁

∑
𝑖=1

𝑎𝑖𝑃(𝑎𝑖)

This sum is over all values {𝑎𝑖} that the random variable 𝑋 can take, multiplied by the
probability of the random variable taking that value (meaning the probability of the event in
sample space that corresponds to that value). This corresponds to the definition of the mean
of a data set given in section 3.2, if you consider 𝑃(𝑎𝑖) to be the number of times 𝑎𝑖 occurs
divided by the number of total measurements 𝑁 . As in the case of the histogram and the
distribution function, the mean of a sample for a large sample size 𝑁 approaches the mean of
the random variable, which we will discuss in more detail in the next chapter. Sometimes we
will use the more concise 𝜇𝑋 = 𝐸(𝑋) to represent the mean (expected) value. Here are some
mathematical properties of the expectation:

• Expectation of a random variable which is always constant (𝑐) is equal to 𝑐, since the
probability of 𝑐 is 1: 𝐸(𝑐) = 𝑐𝑃(𝑐) = 𝑐

• Expectation of a constant multiple of a random variable is:

78

𝐸(𝑐𝑋) = ∑
𝑖

𝑐𝑥𝑖𝑃(𝑥𝑖) = 𝑐 ∑
𝑖

𝑥𝑖𝑃(𝑥𝑖) = 𝑐𝜇𝑋

• Expectation of a sum of two random variables is the sum of their expectations. This is
a more complicated argument, so let us break it down. First, all possible values of the
random variable 𝑋 + 𝑌 come from going through the possible values of 𝑋 (𝑎𝑖) and 𝑌
(𝑏𝑖), and each combination of values has its own probability (called the joint probability
distribution) 𝑃(𝑎𝑖, 𝑏𝑗):

𝐸(𝑋 + 𝑌) = ∑
𝑖

∑
𝑗

(𝑎𝑖 + 𝑏𝑗)𝑃 (𝑎𝑖, 𝑏𝑗)

We can split the sum into two terms by the distributive property of multiplication and then
take out the values 𝑎𝑖 and 𝑏𝑗 out of the sum that they do not depend on:

𝐸(𝑋 + 𝑌) = ∑
𝑖

∑
𝑗

𝑎𝑖𝑃(𝑎𝑖, 𝑏𝑗) + ∑
𝑖

∑
𝑗

𝑏𝑗𝑃(𝑎𝑖, 𝑏𝑗) =

= ∑
𝑖

𝑎𝑖 ∑
𝑗

𝑃(𝑎𝑖, 𝑏𝑗) + ∑
𝑗

𝑏𝑗 ∑
𝑖

𝑃(𝑎𝑖, 𝑏𝑗)

The joint distributions added up over all values of one variable, become single-variable distri-
butions, so this leaves us with two sums which are the two separate expected values:

𝐸(𝑋 + 𝑌) = ∑
𝑖

𝑎𝑖𝑃(𝑎𝑖) + ∑
𝑗

𝑏𝑗𝑃(𝑏𝑗) = 𝐸(𝑋) + 𝐸(𝑌)

Example. The expected value of the number of heads out of two coin tosses can be calculated
using the probability distribution function we found above:

𝐸(𝑋) = 0 × 𝑃(0) + 1 × 𝑃(1) + 2 × 𝑃(2) = 0 + 1/2 + 2 × 1/4 = 1

The expected number of heads out of 2 is 1, if each head comes up with probability 1/2, which
I think you will find intuitive.

Example. The expected value of the number of mutants out of two people can be calculated
using the probability distribution function we found above:

𝐸(𝑋) = 0 × 𝑃(0) + 1 × 𝑃(1) + 2 × 𝑃(2) = 0 + 1 × 0.32 + 2 × 0.04 = 0.4

The expected number of mutants in a sample of two people is 0.4, which may seem a bit
strange. Recall that mean or expected values do not have to coincide with values that are
possible, as we discussed in section 3.2, but are instead a weighted average of values, according
to their frequencies or probabilities.

79

Example. Find the expected value of the number of wins out of two matches for a fringehead
which has the probability of winning of 3/4.

𝐸(𝑋) = 0 × 1/16 + 1 × 6/16 + 2 × 9/16 = 24/16 = 3/2

4.1.5 variance of random variables

Knowledge of the expected value says nothing about how the random variable actually varies:
expectation does not distinguish between a random variable which is constant and one which
can deviate far from the mean. In order to quantify this variation, one might be tempted to
compute the mean differences from the mean value, but it does not work:

𝐸(𝑋 − 𝜇𝑋) = ∑
𝑖

(𝑥𝑖 − 𝜇𝑥)𝑃 (𝑥𝑖) = ∑
𝑖

𝑥𝑖𝑃(𝑥𝑖) − 𝜇𝑥 ∑
𝑖

𝑃(𝑥𝑖) = 𝜇𝑥 − 𝜇𝑥 = 0

The problem is, if we add up all the differences from the mean, the positive ones end up
canceling the negative ones and the expected value of those deviations is exactly zero. This is
why it makes sense to square the differences and add them up:

Note

The variance of a discrete random variable 𝑋 with probability distribution 𝑃(𝑥) is

𝑉 𝑎𝑟(𝑋) = 𝐸((𝑋 − 𝜇𝑋)2) =
𝑁

∑
𝑖=1

(𝑥𝑖 − 𝜇𝑥)2𝑃(𝑥𝑖)

One useful property of the variance is:

𝑉 𝑎𝑟(𝑋) = ∑
𝑖

(𝑥2
𝑖 − 2𝑥𝑖𝜇𝑥 + 𝜇2

𝑥)𝑃 (𝑥𝑖) =

= ∑
𝑖

𝑥2
𝑖 𝑃(𝑥𝑖) − 2𝜇𝑥 ∑

𝑖
𝑥𝑖𝑃(𝑥𝑖) + 𝜇2

𝑥 ∑
𝑖

𝑃(𝑥𝑖) = 𝐸(𝑋2) − 𝐸(𝑋)2

So variance can be calculated as the difference between the expectation of the variable squared
and the squared expectation. Note that the variance is given in units of the variable squared,
so in order to measure the spread of the variable in the same units, we take the square root of
the variance and call it the standard deviation:

𝜎𝑥 = √𝑉 𝑎𝑟(𝑋)

While the expectation of a sum of random variables is the sum of their expectations, for any
random variables, the same is not true for the variance. However, there is a special condition

80

under which this is true. First, let us write the variance of a sum of two random variables 𝑋
and 𝑌 :

𝑉 𝑎𝑟(𝑋 + 𝑌) = 𝐸 [(𝑋 + 𝑌) − (𝜇𝑋 + 𝜇𝑌)]2 =

= 𝐸[(𝑋 − 𝜇𝑋)2 + (𝑌 − 𝜇𝑌)2 − 2(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)] =
= 𝐸(𝑋 − 𝜇𝑋)2 + 𝐸(𝑌 − 𝜇𝑌)2 − 2𝐸[(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)] =

= 𝑉 𝑎𝑟(𝑋) + 𝑉 𝑎𝑟(𝑌) − 2𝐸[(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)]
The last term is a special number called the covariance of the two random variables 𝑋 and 𝑌 ,
which we will see in the chapter on linear regression. So for any two random variables that
have zero covariance, their variance is additive!

Example. The variance of the number of heads out of two coin tosses can be calculated using
its probability distribution function and the expected value (1) from above:

𝑉 𝑎𝑟(𝑋) = (0 − 1)2 × 𝑃(0) + (1 − 1)2 × 𝑃(1) + (2 − 1)2 × 𝑃(2) = 1/4 + 0 + 1/4 = 1/2

Since the variance is 1/2, the standard deviation, or the expected distance from the mean
value is 𝜎 = √1/2.
Example. The variance of the number of mutants out of two people can be calculated using
its probability distribution function and the expected value (0.4) from above:

𝐸(𝑋) = (0 − 0.4)2 × 𝑃(0) + (1 − 0.4)2 × 𝑃(1) + (2 − 0.4)2 × 𝑃(2) =

= 0.42 × 0.64 + 0.62 × 0.32 + 1.62 × 0.04 = 0.32
Since the variance is 0.32, the standard deviation, or the expected distance from the mean
value is 𝜎 =

√
0.32.

Example. We have computed the expected value for the number of wins in two fringehead
fights, so now let us find the variance and standard deviation. We already know the possible
values of 𝑋, and the associated probabilities, so we calculate:

𝐸(𝑋2) = 02 × 1/16 + 12 × 6/16 + 22 × 9/16 = 42/16

Then the variance is:

𝑉 𝑎𝑟(𝑋) = 𝐸(𝑋2) − 𝐸(𝑋)2 = 42/12 − 9/4 = (42 − 27)/16 = 15/16

and the standard deviation is 𝜎 =
√

15/4 or just under 1.

81

4.1.6 Exercises

Calculate the expected values and variances of the following probability distributions, where
the possible values of the random variable are in curly brackets, and the probability of each
value is indicated as 𝑃 (𝑥).

1. 𝑋 = {0, 1} and 𝑃(0) = 0.1, 𝑃 (1) = 0.9.
2. 𝑋 = {1, 2, 3} and 𝑃(1) = 𝑃(2) = 𝑃(3) = 1/3.
3. 𝑋 = {10, 15, 100} and 𝑃(10) = 0.5, 𝑃 (15) = 0.3, 𝑃 (100) = 0.2.
4. 𝑋 = {0, 1, 2, 3, 4} and 𝑃(0) = 1/8, 𝑃 (1) = 𝑃(2) = 𝑃(3) = 1/4, 𝑃 (4) = 1/8.
5. 𝑋 = {−1.5, −0.4, 0.3, 0.9} and 𝑃(−1.5) = 0.4, 𝑃 (−0.4) = 0.2, 𝑃 (0.3) = 0.35, 𝑃 (0.9) =

0.05.

4.2 Examples of distributions

4.2.1 uniform distribution

Perhaps the simplest random variable (besides a constant, which is not really random) is the
uniform random variable, for which every outcome has equal probability. The distribution of
a fair coin is uniform with two values, 𝐻 or 𝑇 , or 0 and 1, each with probability 1/2. More
generally, a discrete uniform random variable has 𝑁 outcomes and each one has probability
1/𝑁 . This is what people often mean when they use the word random - an experiment where
each outcome is equally likely.

We can calculate the expectation and variance of a uniform random variable 𝑈 :

𝐸(𝑈) =
𝑛

∑
𝑖=1

𝑎𝑖𝑃(𝑎𝑖) = 1
𝑛

𝑛
∑
𝑖=1

𝑎𝑖

So the expected value is the mean of all the values of the uniform random variable.

Example. In the special case of the uniform distribution of 𝑛 + 1 integers between 0 and 𝑛
(𝑎𝑖 = 𝑖, for 𝑖 = 0, ..., 𝑛), each value has probability 𝑃 = 1/(𝑛 + 1). The expected value is the
average of the maximum and minimum values (using the fact that ∑𝑛

𝑖=0 𝑖 = 𝑛(𝑛 + 1)/2):

𝐸(𝑈) = 𝑛(𝑛 + 1)
2(𝑛 + 1) = 𝑛

2 (4.1)

Generalizing, for a random variable on integers between 𝑎 and 𝑏, the expectation is

𝐸(𝑈) = 𝑎 + 𝑏
2 (4.2)

82

We can also write down the expression for the variance of the discrete uniform distribution as
follows:

𝑉 𝑎𝑟(𝑈) = 𝐸(𝑈2) − 𝐸(𝑈)2 = 1
𝑛

𝑛
∑
𝑖=1

𝑎2
𝑖 − 1

𝑛2 (
𝑛

∑
𝑖=1

𝑎𝑖)
2

Example. In the special case of the uniform distribution of 𝑛 + 1 integers between 0 and
𝑛 (𝑎𝑖 = 𝑖, for 𝑖 = 0, ..., 𝑛), each value has probability 𝑃 = 1/(𝑛 + 1). The variance can be
calculated using the formula for the sum of squares: ∑𝑛

𝑖=0 𝑖2 = 𝑛(𝑛 + 1)(2𝑛 + 1)/6.

𝑉 𝑎𝑟(𝑈) = (𝑛 + 1)(2𝑛 + 1)𝑛
6(𝑛 + 1) − 𝑛2

4 = 2𝑛2 + 𝑛
6 − 𝑛2

4 = 𝑛(𝑛 + 2)
12 (4.3)

This can be generalize to a uniform random variable on integers between 𝑎 and 𝑏 (omitting
the algebraic details) so the variance for that uniform random variable is:

𝑉 𝑎𝑟(𝑈) = (𝑏 − 𝑎 + 1)2 − 1
12 = (𝑏 − 𝑎)2 + 2(𝑏 − 𝑎)

12 (4.4)

0 1 2 3

unifrom RV

pr
ob

ab
ili

ty

0.
00

0.
15

(a) Uniform distribution on integers from 0 to 3

−6 −5 −4 −3 −2 −1 0 1 2 3

uniform RV

pr
ob

ab
ili

ty

0.
00

0.
06

(b) Uniform distribution on integers from -6 to 3

Figure 4.6: Two uniform random distributions with different ranges.

4.2.2 binomial distribution

We have introduced binary or Bernoulli trials in section 4.1. Assume that the two values of
the random variable 𝑋 are 0 and 1, with probability 1 − 𝑝 and 𝑝, respectively. Then we can
calculate the expectation and variance of a single Bernoulli trial:

𝐸(𝑋) = 0 × (1 − 𝑝) + 1 × 𝑝 = 𝑝
𝑉 𝑎𝑟(𝑋) = 𝐸(𝑋2) − 𝐸(𝑋)2 = 02 × (1 − 𝑝) + 12 × 𝑝 − 𝑝2 = 𝑝(1 − 𝑝)

83

The first result is likely intuitive, but the second deserves a comment. Note that depending on
the probability of 1, the variance, or the spread in outcomes of a Bernoulli trial is different. The
highest variance occurs when 𝑝 = 1/2, or equal probability of 0 or 1, but when 𝑝 approaches 0
or 1, the variance approaches 0. Thus, as the probability approaches zero or one the random
variable approaches a constant (either always 1 or 0); hence, no variance.

One can extend this scenario and ask what happens in a string of Bernoulli trials, for instance,
in a string of 10 coin tosses, or in testing 20 randomly selected people for a mutation. The
mathematical problem is to calculate the probability distribution of the number of success out
of many trials. This is known as the binomial random variable, which is defined as the sum of
𝑛 independent, identical Bernoulli random variables.

Definition

Given 𝑛 independent Bernoulli trials 𝑋 with the same probability of success 𝑝, the
binomial random variable is defined as:

𝐵 =
𝑛

∑
𝑖=1

𝑋𝑖

where 𝑋𝑖 is the random variable from the i-th Bernoulli trial, which takes values of 1 and
0.

In this definition I use the term independence without defining it properly, which will be done
in chapter 6. Intuitively, independence between two Bernoulli trials (e.g. coin tosses) means
that the outcome of one trial does not change the probability of the outcomes of any other
trials. This amounts to the assumption that the probability of an outcome followed by another
one is the product of the separate probabilities of the two outcomes. For example, if the two
outcomes are wins and losses, then 𝑃({𝑊𝐿}) = 𝑃(𝑊)𝑃(𝐿). This will be used below in the
calculation of the variance of the binomial random variable.

To find the probability distribution of the binomial random variable, we need to define the
event of 𝑘 wins out of 𝑛 trials. Consider the case of 4 trials. It is easy to find the event
of 4 wins, as it is comprised only of the outcome {𝑊𝑊𝑊𝑊}. Then, 𝑃(4) = 𝑝4, based
on the independence assumption. The event of winning 3 times consists of four strings:
{𝐿𝑊𝑊𝑊, 𝑊𝐿𝑊𝑊, 𝑊𝑊𝐿𝑊, 𝑊𝑊𝑊𝐿} so the probability of obtaining 3 wins is the sum
of the four probabilities, each equal to $ p^3(1-p)$ from the independence assumption above,
so 𝑃(3) = 4𝑝3(1 − 𝑝). The event of winning 2 times is even more cumbersome, and consists
of six strings: {𝐿𝐿𝑊𝑊, 𝑊𝐿𝐿𝑊, 𝑊𝑊𝐿𝐿, 𝑊𝐿𝑊𝐿, 𝐿𝑊𝐿𝑊, 𝐿𝑊𝑊𝐿}, so 𝑃(2) = 6𝑝2(1 − 𝑝)2

by the same reasoning.

Now imagine doing this to calculate 50 wins out of 100 trials. The counting gets ugly very
fast. We need a general formula to help us count the number of ways of winning 𝑘 times out
of 𝑛 trials. We denote this number (𝑛

𝑘), also known as “𝑛 choose 𝑘” because it corresponds
to the number of ways of choosing 𝑘 distinct objects out of 𝑛 without regard to order. The

84

connection is as follows: let us label each trial from 1 to 𝑛. Then to construct a string with 𝑘
wins, we need to specify which trials resulted in a win (the rest are of course losses). It does
not matter in which order those wins are selected - it still results in the same string. Therefore
the number of different strings of 𝑛 binary trials with 𝑘 successes is the same as the number
of ways of selecting 𝑘 different objects out of 𝑛 different ones.

The number itself can be derived as follows: there are 𝑛 possibilities for choosing the number
of the first win, then 𝑛 − 1 possibilities for choosing the number of the second win, etc, and
finally when choosing the 𝑘-th win there are 𝑛 − 𝑘 + 1 possibilities (note that 𝑘 ≤ 𝑛, and
if 𝑛 = 𝑘 there is only one option left for the last choice.) Thus, the total number of such
selections is: 𝑛(𝑛 − 1)...(𝑛 − 𝑘 + 1) = 𝑛!/(𝑛 − 𝑘)!
But note that we overcounted, because we considered different strings of wins depending on
the order in which a win was selected, even if the resulting strings are the same (example:
𝑛 = 4 and 𝑘 = 4 gives us 4! although there is only one string of 4 wins out of 4). In order to
correct for the overcounting, we need to divide by the total number of ways of selecting the
same string of 𝑘 wins out of 𝑛. This is number of ways of rearranging 𝑘 wins, or 𝑘! Thus, the
number we seek is:

(𝑛
𝑘) = 𝑛!

𝑘!(𝑛 − 𝑘)!

We can now calculate the general probability of winning 𝑘 times out of 𝑛 trials. First, each
string of 𝑘 wins and 𝑛 − 𝑘 losses has the probability 𝑝𝑘(1 − 𝑝)𝑛−𝑘. Since we now know that
the number of such strings is 𝐶𝑛

𝑘 , the probability is:

𝑃(k wins in n trials) = 𝑃(𝐵 = 𝑘) = (𝑛
𝑘)𝑝𝑘(1 − 𝑝)𝑛−𝑘 (4.5)

This is the probability distribution of the binomial random variable 𝐵.

The binomial random variable has much simpler formulas for the mean and the variance. First,
we know that the mean of a sum of random variables is the sum of the means and the binomial
random variable is a sum of 𝑛 Bernoulli random variables 𝑋. Let us say 𝑋 takes only the
values of 0 and 1 with probabilities 1−𝑝 and 𝑝, so we can use the additive property of expected
value to calculate 𝐸(𝐵):

𝐸(𝐵) = 𝐸 [
𝑛

∑
𝑖=1

𝑋] =
𝑛

∑
𝑖=1

𝐸(𝑋) =
𝑛

∑
𝑖=1

𝑝 = 𝑛𝑝 (4.6)

This means that the expected number of heads/successes is the product of the probability
of 1 head/success and the number of trials, e.g. if the probability of success is 0.3, then the
expected number of successes out of 100 is 30.

85

Now let us calculate the variance, for which in general the same additive property is not true.
But remember that in the section on variance above we showed that the variance of a sum of
two random variables is the sum of their two separate variances as long as their covariance is
zero. It turns out that for random variables that satisfy the product rule 𝑃(𝑥, 𝑦) = 𝑃(𝑥)𝑃(𝑦)
their covariance is 0:

𝐸((𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)) = ∑
𝑖

∑
𝑗

(𝑥𝑖 − 𝜇𝑋)(𝑦𝑗 − 𝜇𝑌)𝑃 (𝑥𝑖, 𝑦𝑗) =

= ∑
𝑖

(𝑥𝑖 − 𝜇𝑋)𝑃 (𝑥𝑖) ∑
𝑗

(𝑦𝑗 − 𝜇𝑌)𝑃 (𝑦𝑗)

We saw in section on variance above that the expected value of deviations from the mean is
zero, which gives us:

𝐸((𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)) = 𝐸(𝑋 − 𝜇𝑋)𝐸(𝑌 − 𝜇𝑌) = 0

The demonstrates that for independent variables the variance of their sum is the sum of the
variances and we can use this to compute the variance of the binomial random variable:

𝑉 𝑎𝑟(𝐵) = 𝑉 𝑎𝑟 [
𝑛

∑
𝑖=1

𝑋] =
𝑛

∑
𝑖=1

𝑉 𝑎𝑟(𝑋) =
𝑛

∑
𝑖=1

𝑝(1 − 𝑝) = 𝑛𝑝(1 − 𝑝) (4.7)

For any given number of Bernoulli trials, the variance has a quadratic dependence on proba-
bility of success 𝑝: if 𝑝 = 1 or 𝑝 = 0, corresponding to all successes, or all failures, respectively,
then the variance is zero, since there is no spread in the outcome. For a fair coin 𝑝 = 1/2
the variance is highest. This can be seen in the plots of binomial random variables for 𝑛 = 2,
𝑛 = 5, and 𝑛 = 50, shown in figures below.

0 1 2

binomial RV

pr
ob

ab
ili

ty

0.
0

0.
3

0.
6

(a) Binomial distribution with p=0.2

0 1 2

binomial RV

pr
ob

ab
ili

ty

0.
0

0.
2

0.
4

(b) Binomial distribution with p=0.5

Figure 4.7: Binomial random distributions with two trials.

86

0 1 2 3 4 5

binomial RV

pr
ob

ab
ili

ty

0.
0

0.
2

0.
4

(a) Binomial distribution with p=0.2

0 1 2 3 4 5

binomial RV

pr
ob

ab
ili

ty

0.
00

0.
15

0.
30

(b) Binomial distribution with p=0.5

Figure 4.8: Binomial random distributions with five trials.

0 3 6 9 13 18 23 28 33 38 43 48

binomial RV

pr
ob

ab
ili

ty

0.
00

0.
06

0.
12

(a) Binomial distribution with p=0.2

0 3 6 9 13 18 23 28 33 38 43 48

binomial RV

pr
ob

ab
ili

ty

0.
00

0.
06

(b) Binomial distribution with p=0.5

Figure 4.9: Binomial random distributions with fifty trials.

87

4.2.3 Exercises

Calculate the expected values and variances based on the plotted distributions using the defini-
tions ?@def-exp-val and ?@def-var-prob and compare your calculations against equations
Equation 4.1 and Equation 4.3 (for uniform random variable) and equations Equation 4.5 and
Equation 4.7 (for binomial random variable).

1. Calculate the mean and the variance for the two uniform distributions plotted in Fig-
ure 4.6.

2. Calculate the mean and the variance for the two binomial distributions plotted in Fig-
ure 4.7.

3. Calculate the mean and the variance for the two binomial distributions plotted in Fig-
ure 4.8.

4. Calculate the mean and the variance for the two binomial distributions plotted in Fig-
ure 4.9.

4.2.4 testing for mutants

Suppose that you’re screening people for a particular genetic abnormality. It is known from
prior experience that about 5% of this population carry this mutation. You run your tests
on a group of 20 people, and the results indicate that 3 of them are carriers. Clearly, this is
higher than you expected - 3/20 is 15%, or 3 times higher than the estimate. One of your
colleagues exclaims, What are the odds of this?

To answer this question, one must start by stating your assumptions. First, the people tested
must be chosen from the same population, so we can assume a priori each had probability 5%
of being a carrier. Second, the people must be selected without bias, that is, selection of one
must be unlinked or independent of others. As a counter-example, if your selection included an
entire biological family, that would be a biased selection - it may be that the whole family has
the mutation, or maybe they don’t, but either way probability is no longer determined on a
person-by-person basis. If these assumptions are made, then one can calculate the probability
of making a selection of 20 people that includes 3 carriers of the mutation, using the binomial
distribution.

The formula for the binomial distribution in equation ?? provides the answer for any given
number of mutants. For example, the probability of 3 people out of 20 being carriers for the
mutation is:

𝑃 (3 out of 20; 𝑝 = 0.05) = (20
3) × 0.053 × 0.98517 =

= 1140 × 0.053 × 0.98517 ≈ 0.0596

88

One may want to ask a different question: what is the probability that there are at least 3
mutants in the sample of 20 people? To most efficient way to calculate this it is to answer the
complementary question first: what is the probability that there are fewer than 3 mutants out
of 20 people? This corresponds to three values of the random variable: 0, 1, or 2. We can cal-
culate the total probability by adding up the three separate probabilities, since they represent
non-overlapping events (one can’t have 1 and 2 mutants in a sample simultaneously):

𝑃(𝐵 < 3; 𝑝 = 0.05) = 𝑃(𝐵 = 0) + 𝑃(𝐵 = 1) + 𝑃(𝐵 = 2) =

= (20
2) × 0.052 × 0.98518 + (20

1) × 0.051 × 0.98519 + (20
0) × 0.050 × 0.98520 ≈

≈ 0.925
The answer to the original question is found by taking the complementary probability 1 −
0.925 = 0.075. Thus the probability of finding at least 3 mutants in a sample of 20 with
individual probability 0.0015 is approximately 0.075. The answer is close to the probability
of having exactly 3 mutants because the probability of finding more than 3 mutants is very
low.

89

Tutorial 4: Random number generators

Learning goals

In this tutorial you will learn to:

• use uniform random number generator
• use binomial random number generator
• calculate probabilities from binomial distribution
• plot probability distribution functions

Random number generators

Simulating randomness with a computer is not a simple task. Randomness is contrary to the
nature of a computer, which is designed to perform operations exactly. However, there are
algorithms that produce a string of numbers that are for all intents and purposes random: there
is no obvious connection between one number and the next, and the values don’t form any
pattern. Such algorithms are called random number generators, although to be more precise
they produce pseudo-random numbers. The reason is that they actually produce a perfectly
predictable string of numbers, which eventually repeats itself, but with a humongous period.
One can even produce the same random number, or the same string of random numbers, by
specifying the seed for the random number generator. This is very useful if one wants to
reproduce the results of a code that uses random numbers.

uniform discrete random numbers

Of course, random variable are not all the same - they have different distributions. R has a
number of functions for producing random numbers from different distributions. To produce
random numbers from a set of values with a uniform probability distribution, use the function
sample(). The following command produces a random integer between 1 and 20. Repeating
the same command produces a new random number, which (most likely) is not the same as the
first. The first input argument (1:20) is the vector of values from which to draw the random
number, and the second is the size of the sample.

90

sample(1:20,1)
sample(1:20,1)

If the random seed is set to some value (e.g. 100 below), then the random number generator
will produce the same “random” number if this command is repeated:

set.seed(101)
sample(1:20,1)
set.seed(101)
sample(1:20,1)

To generate 10 randomly chosen integers between 1 and 20, see the following two commands,
which differ in setting the value of the option replace. The first command doesn’t specify
the value for replace, and by default it is set to FALSE, so the command draws numbers
without replacing them (meaning that all the numbers in the sample are unique). In the
second command replace is set to TRUE, so the numbers that were selected can be chosen
again. In both cases, repeatedly running the command results in a different set of randomly
chosen numbers, which you should investigate by copying the commands into R and running
them yourself.

sample_vec <- sample(1:20,10,replace=TRUE)
print(sample_vec)

table() is a very useful function for tallying how many values of each type are in a vector. It
essentially provides a kind of histogram, with each distinct value in the data set a distinct bin,
so it may be used together with barplot() to plot a detailed histogram:

print(table(sample_vec))
barplot(table(sample_vec))
hist(sample_vec,breaks=0:21, col = 'gray')

binomial random number generator

If you need to generate random numbers from the binomial distribution, R has you covered.
The command is rbinom(s, n, p) and it requires three input values: s is the number of
observations (sample size), n is the number of binary trials in one observation, and p is the
probability of success in one binary trial. The following two commands generate a single
random number, the number of successes out of 20 trials with probability of success 0.2 and
0.6:

91

rbinom(1,size =20,p=0.2)
rbinom(1,size =20,p=0.6)

To generate a sample of ten random numbers, change the first input parameter to 10. As
you’d expect, the samples of 10 observations are (most likely) noticeably different: when the
probability p is 0.2, the number of successes tend to be less than 6, while for probability 0.6,
the numbers are usually greater than 10.

rbinom(10,20,0.2)
rbinom(10,20,0.6)

Notice that the range of possible values of this random variable is between 0 and 20, but unlike
the uniform random numbers produced with the sample() function, the probabilities of obtain-
ing different numbers are different and depend on the parameter p. Calculation and plotting
of the binomial distribution function can be accomplishes with the command dbinom(x,n,p),
where 𝑥 is the value of the random variable (between 0 and n), 𝑛 is the number of trials, and
p is the probability of success. For instance, the following script calculate the probability of 4
successes out of 20 trials with probability 𝑝 = 0.2:

n <- 20
p <- 0.2
dbinom(4,n,p)

The script below calculates the probabilities of all of the possible values of the random variable
by substituting the vector of these values (e.g. 0 to 20) instead of the number 1, generating the
probability distribution vector. This vector is plotted vs. the values of the random variable
using the barplot() function, producing an aesthetically pleasing plot of the binomial distri-
bution. The script plots two binomial probability distributions, both with 𝑛 = 20, the first
with 𝑝 = 0.2 and the second with 𝑝 = 0.6. To add values to the x axis one needs the option
names.arg assigned the vector of values, the axis labels in barplot use the same options we
saw before (xlab and ylab), and the main option produces a title above each plot.

values.vec <- 0:n
prob.dist <- dbinom(values.vec,n,p)
barplot(prob.dist, names.arg=values.vec, xlab='binomial RV',ylab='probability',
main='binom dist with n=20 and p=0.2')
p<-0.6
prob.dist <- dbinom(values.vec,n,p)
barplot(prob.dist, names.arg=values.vec, xlab='binomial RV',ylab='probability',
main='binom dist with n=20 and p=0.6')

92

Exercises

The following exercises ask you to perform computational tasks using R. Type your code in
the box below and try to do the task on your own before clicking on the Answer or Hint boxes
to expand them.

1. Use the sample() function to generate a sample of 10 random numbers out of 20 integers
(from 1 to 20) without replacement, assign it to variable sample_vec and print it out.

Hint

First line should contain assignment <-; second line should have print(sample_vec)

2. Use the sample() function to generate a sample of 20 random numbers of out 20 integers
(from 1 to 20) with replacement, assign it to variable sample_vec and print it out.

Hint

Add replace=TRUE to the sample() function call; second line should have
print(sample_vec)

3. Use the rbinom() function to generate a sample of 20 random numbers of successes/wins
out of 12 trials with probability of success in one trial of 0.4, assign it to variable
binom_vec and print it out.

Hint

Remember the order of inputs into the function rbinom(): the number of random values
is the number of batches of trials (first input), the number of trials is the size of each
batch (second input). The second line should have print(binom_vec).

4. Use the rbinom() function to generate a sample of 12 random numbers of successes/wins
out of 20 trials, with probability of success in one trial of 0.4, assign it to variable
binom_vec and print it out.

93

Hint

Remember the order of inputs into the function rbinom(): the number of random values
is the number of batches of trials (first input), the number of trials is the size of each
batch (second input). The second line should have print(binom_vec).

94

5 Linear regression

The place in which I’ll fit will not exist until I make it.
–James Baldwin

In the last two chapters we learned to use data sets which fall into a few categories. We now
turn to data which can be measured as a range of numerical values. We can ask a similar
question of numerical data that we asked of categorical: how can we tell whether two variables
are related? And if they are, what kind of relationship is it? This takes us into the realm
of data fitting, raising two related questions: what is the best mathematical relationship to
describe a data set? and what is the quality of the fit? You will learn to do the following in
this chapter:

• define the quality of the fit between a line and a two-variable data set
• calculate the parameters for the best-fit line based on statistics of the data set
• use R to calculate and plot best-fit line for a data set
• understand the meaning of correlation and covariance
• understand the phenomenon of regression to the mean

5.1 Linear relationship between two variables

Although there is always error in any real data, there may be a relationship between the two
variables that is not random: for example, when one goes up, the other one tends to go up
as well. These relationships may be complicated, but in this chapter we will focus on the
the simplest and most common type of relationship: linear, where a change in one variable is
associated with a proportional change in the other, plus an added constant. This is expressed
mathematically using the familiar equation for a linear function, with parameters slope (𝑎)
and intercept (𝑏):

𝑦 = 𝑎𝑥 + 𝑏

Let us say you have measured some data for two variables, which we will call, unimaginatively,
𝑥 and 𝑦. This data set consists of pairs of numbers: one for 𝑥, one for 𝑦, for example, the
heart rate and body temperature of a person go together. They cannot be mixed up between
different people, as the data will lose all meaning. We can denote this a list of 𝑛 pairs of

95

numbers: (𝑥𝑖, 𝑦𝑖) (where 𝑖 is an integer between 1 and 𝑛). Since this is a list of pairs of
numbers, we can plot them as separate points in the plane using each 𝑥𝑖 as the x-coordinate
and each 𝑦𝑖 as the y-coordinate. This is called a scatterplot of a two-variable data set. For
example, two scatterplots of a data set of heart rate and body temperature are shown in figure
??. In the first one, the body temperature is on the x-axis, which makes it the explanatory
variable; in the second one, the body temperature is on the y-axis, which makes it the response
variable.

my_data<-read.table("https://raw.githubusercontent.com/dkon1/quant_life_quarto/main/data/HR_temp.txt", header=TRUE)
plot(my_data$Temp, my_data$HR,main='heart rates vs. body temps', cex=1.5, cex.axis=1.5,cex.lab=1.5)
plot(my_dataHR, my_dataTemp,main='body temps vs. heart rates', cex=1.5, cex.axis=1.5,cex.lab=1.5)

97 98 99 100

60
75

90

heart rates vs. body temps

my_data$Temp

m
y_

da
ta

$H
R

(a) Body temp (response variable) vs heart rate (ex-
planatory variable)

60 65 70 75 80 85 90
97

99

body temps vs. heart rates

my_data$HR

m
y_

da
ta

$T
em

p

(b) Heart rate (response variable) vs body temp (ex-
planatory variable)

Figure 5.1: Scatterplot of heart rates and body temperatures: a) with heart rate as the ex-
planatory variable; b) with body temperature as the explanatory variable.

5.2 Linear least-squares fitting

5.2.1 sum of squared errors

It is easy to find the best-fit line for a data set with only two points: its slope and intercept
can be found by solving the two simultaneous linear equations, e.g. if the data set consists
of (3, 2.3), (6, 1.7), then finding the best fit values of 𝑎 and 𝑏 means solving the following two
equations:

3𝑎 + 𝑏 = 2.3
6𝑎 + 𝑏 = 1.7

These equations have a unique solution for each unknown: 𝑎 = −0.2 and 𝑏 = 2.9 (you can
solve it using basic algebra).

96

However, a data set with two points is very small and cannot serve as a reasonable guide for
finding a relationship between two variables. Let us add one more data point, to increase our
sample size to three: (3, 2.3), (6, 1.7), (9, 1.3). How do you find the best fit slope and intercept?
Bad idea: take two points and find a line, that is the slope and the intercept, that passes
through the two. It should be clear why this is a bad idea: we are arbitrarily ignoring some
of the data, while perfectly fitting two points. So how do we use all the data? Let us write
down the equations that a line with slope 𝑎 and intercept 𝑏 have to satisfy in order to fit our
data points:

3𝑎 + 𝑏 = 2.3 (5.1)
6𝑎 + 𝑏 = 1.7 (5.2)
9𝑎 + 𝑏 = 1.3 (5.3)

This system has no exact solution, since there are three equations and only two unknowns.
We need to find 𝑎 and 𝑏 such that they are a best fit to the data, not the perfect solution. To
do that, we need to define what we mean by the goodness of fit.

One simple way to asses how close the fit is to the data is to subtract the predicted values of
𝑦 from the data, as follows: 𝑒𝑖 = 𝑦𝑖 − (𝑎𝑥𝑖 + 𝑏). The values 𝑒𝑖 are called the errors or residuals
of the linear fit. If the values predicted by the linear model (𝑎𝑥𝑖 + 𝑏) are close to the actual
data 𝑦𝑖, then the error will be small. However, if we add it all up, the errors with opposite
signs will cancel each other, giving the impression of a good fit simply if the deviations are
symmetric.

A more reasonable approach is to take absolute values of the deviations before adding them
up. This is called the total deviation, for 𝑛 data points with a line fit:

𝑇 𝐷 =
𝑛

∑
𝑖=1

|𝑦𝑖 − 𝑎𝑥𝑖 − 𝑏|

Mathematically, a better measure of total error is a sum of squared errors, which also has the
advantage of adding up non-negative values, but is known as a better measure of the distance
between the fit and the data (think of Euclidean distance, which is also a sum of squares) :

𝑆𝑆𝐸 =
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝑎𝑥𝑖 − 𝑏)2

Thus we have formulated the goal of fitting the best line to a two-variable data set, also known
as linear regression: find the values of slope and intercept that result in the lowest
possible sum of squared errors. There is a mathematical recipe which produces these
values, which will be described in the next section. Any model begins with assumptions and
in order for linear regression to be a faithful representation of a data set, the following must
be true:

97

• the variables have a linear relationship

• all of the measurements are independent of each other

• there is no noise in the measurements of the explanatory variable

• the noise in the measurements of the response variable is normally distributed with mean
0 and identical standard deviation

The reasons why these assumptions are necessary for linear regression to work are beyond
the scope of the text, and they are elucidated very well in the book Numerical Recipes [?].
However, it is important to be aware of them because if they are violated, the resulting linear
fit may be meaningless. It’s fairly clear that if the first assumption is violated, you are trying
to impose a linear relationship on something that is actually curvy. The second assumption of
independence is very important and often overlooked. The mathematical reasons for it have
to do with properly measuring the goodness of fit, but intuitively it is because measurements
that are linked can introduce a new relationship that has to do with the measurements, rather
than the relationship between the variables. Violation of this assumption can seriously damage
the reliability of the linear regression. The third assumption is often ignored, since usually
the explanatory variable is also measured and thus has some noise. The reason for it is
that the measure of goodness of fit is based only on the response variable, and there is no
consideration of the noise in the explanatory variable. However, a reasonable amount of
noise in the explanatory variable is not catastrophic for linear regression. Finally, the last
assumption is due to the statistics of maximum-likelihood estimation of the slope and intercept,
but again some deviation from perfect normality (bell-shaped distribution) of the noise, or
slightly different variation in the noise is to be expected.

5.2.2 best-fit slope and intercept

Definition

The covariance of a data set of pairs of values (𝑋, 𝑌) is the sum of the products of the
corresponding deviations from their respective means:

𝐶𝑜𝑣(𝑋, 𝑌) = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑥𝑖 − �̄�)(𝑦𝑖 − ̄𝑌)

Intuitively, this means that if two variable tend to deviate in the same direction from their
respective means, they have a positive covariance, and if they tend to deviate in opposite
directions from their means, they have a negative covariance. In the intermediate case, if
sometimes they deviate together and other times they deviate in opposition, the covariance is
small or zero. For instance, the covariance between two independent random variables is zero,
as we saw in section 4.2.

98

It should come as no surprise that the slope of the linear regression depends on the covariance,
that is, the degree to which the two variables deviate together from their means. If the
covariance is positive, then for larger values of 𝑥 the corresponding 𝑦 values tend to be larger,
which means the slope of the line is positive. Conversely, if the covariance is negative, so is
the slope of the line. And if the two variables are independent, the slope has to be close to
zero. The actual formula for the slope of the linear regression is [?]:

𝑚 = 𝐶𝑜𝑣(𝑋, 𝑌)
𝑉 𝑎𝑟(𝑋) (5.4)

I will not provide a proof that this slope generates the minimal sum of squared errors, but
that is indeed the case. To find the intercept of the linear regression, we make use of one other
property of the best fit line: in order for it to minimize the SSE, it must pass through the
point (�̄�, ̄𝑌). Again, I will not prove this, but note that the point of the two mean values is
the central point of the “cloud” of points in the scatterplot, and if the line missed that central
point, the deviations will be larger. Assuming that is the case, we have the following equation
for the line: ̄𝑌 = 𝑎�̄� + 𝑏, which we can solve for the intercept 𝑏:

𝑏 = ̄𝑌 − 𝐶𝑜𝑣(𝑋, 𝑌)�̄�
𝑉 𝑎𝑟(𝑋) (5.5)

5.2.3 Execises

Table 5.1: Body leanness (B) and heat loss rate (H) in boys; partial data set from [?]

B(𝑚2/𝑘𝑔) H(∘𝐶/𝑚𝑖𝑛)
7.0 0.103
5.0 0.091
3.6 0.014
3.3 0.024
2.4 0.031
2.1 0.006

Use the data set in table 5.2.3 to answer the following questions:

1. Compute the means and standard deviations of each variable.

2. Compute the covariance between the two variables.

3. Calculate the slope and intercept of the linear regression for the data with 𝐵 as the
explanatory variable.

99

4. Make a scatterplot of the data set with 𝐵 as the explanatory variable and sketch the
linear regression line with the parameters you computed.

5. Calculate the slope and intercept of the linear regression the data with 𝐻 as the explana-
tory variable.

6. Make a scatterplot of the data set, with 𝐻 as the explanatory variable and sketch the
linear regression line with the parameters you computed.

5.2.4 correlation and goodness of fit

The correlation between two random variables is a measure of how much variation in one
corresponds to variation in the other. If this sounds very similar to the description of covari-
ance, it’s because they are closely related. Essentially, correlation is a normalized covariance,
restricted to lie between -1 and 1. Here is the definition:

Definition

The (linear) correlation of a dataset of pairs of data values (X,Y) is:

𝑟 = 𝐶𝑜𝑣(𝑋, 𝑌)
√𝑉 𝑎𝑟(𝑋)𝑉 𝑎𝑟(𝑌)

= 𝐶𝑜𝑣(𝑋, 𝑌)
𝜎𝑋𝜎𝑌

If the two variables are identical, 𝑋 = 𝑌 , then the covariance becomes its variance 𝐶𝑜𝑣(𝑋, 𝑌) =
𝑉 𝑎𝑟(𝑋) and the denominator also becomes the variance, and the correlation is 1. This is also
true if 𝑋 and 𝑌 are scalar multiples of each other, as you can see by plugging in 𝑋 = 𝑐𝑌 into
the covariance formula. The opposite case if 𝑋 and 𝑌 are diametrically opposite, 𝑋 = −𝑐𝑌 ,
which has the correlation coefficient of -1. All other cases fall in the middle, neither perfect
correlation nor perfect anti-correlation. The special case if the two variables are independent,
and thus their covariance is zero, has the correlation coefficient of 0.

100

This gives a connection between correlation and slope of linear regression:

𝑎 = 𝑟 𝜎𝑌
𝜎𝑋

(5.6)

Whenever linear regression is reported, one always sees the values of correlation 𝑟 and squared
correlation 𝑟2 displayed. The reason for this is that 𝑟2 has a very clear meaning of the the
fraction of the variance of the dependent variable 𝑌 explained by the linear regression
𝑌 = 𝑎𝑋 + 𝑏. Let us unpack what this means.

According to the stated assumptions of linear regression, the response variable 𝑌 is assumed
to be linear relationship with the explanatory variable 𝑋, but with independent additive noise
(also normally distributed, but it doesn’t play a role for this argument). Linear regression
captures the linear relationship, and the remaining error (residuals) represent the noise. Thus,
each value of 𝑌 can be written as 𝑌 = 𝑅 + ̂𝑌 where 𝑅 is the residual (noise) and the value
predicted by the linear regression is ̂𝑌 = 𝑎𝑋 + 𝑏. The assumption that 𝑅 is independent
of 𝑌 means that 𝑉 𝑎𝑟(𝑌) = 𝑉 𝑎𝑟(̂𝑌) + 𝑉 𝑎𝑟(𝑅) because variance is additive for independent
random variables, as we discussed in section ??. By the same reasoning 𝐶𝑜𝑣(𝑋, ̂𝑌 + 𝑅) =
𝐶𝑜𝑣(𝑋, ̂𝑌) + 𝐶𝑜𝑣(𝑋, 𝑅). These two covariances can be simplified further: 𝐶𝑜𝑣(𝑋, 𝑅) = 0
because 𝑅 is independent random noise. 𝑋 and the predicted ̂𝑌 are perfectly correlated, so
𝐶𝑜𝑣(𝑋, ̂𝑌) = 𝐶𝑜𝑣(𝑋, 𝑚𝑋 + 𝑏) = 𝑉 𝑎𝑟(𝑋) = 𝑉 𝑎𝑟(̂𝑌). This leads to the derivation of the
meaning of 𝑟2:

101

𝑟2 = 𝐶𝑜𝑣(𝑋, 𝑌)2

𝑉 𝑎𝑟(𝑋)𝑉 𝑎𝑟(𝑌) = (𝐶𝑜𝑣(𝑋, ̂𝑌) + 𝐶𝑜𝑣(𝑋, 𝑅))2

𝑉 𝑎𝑟(𝑋)𝑉 𝑎𝑟(𝑌) =

= 𝑉 𝑎𝑟(𝑋)𝑉 𝑎𝑟(̂𝑌)
𝑉 𝑎𝑟(𝑋)𝑉 𝑎𝑟(𝑌) = 𝑉 𝑎𝑟(̂𝑌)

𝑉 𝑎𝑟(𝑌)

(5.7)

One should be cautious when interpreting results of a linear regression. First, just because
there is no linear relationship does not mean that there is no other relationship. Figure 5.2.4
shows some examples of scatterplots and their corresponding correlation coefficients. What
it shows is that while a formless blob of a scatterplot will certainly have zero correlation, so
will other scatterplots in which there is a definite relationship (e.g. a circle, or a X-shape).
The point is that correlation is always a measure of the linear relationship between
variables.

The second caution is well known, as that is the danger of equating correlation with a causal
relationship. There are numerous examples of scientists misinterpreting a coincidental cor-
relation as meaningful, or deeming two variables that have a common source as causing one
another. For example, one can look at the increase in automobile ownership in the last cen-
tury and the concurrent improvement in longevity and conclude that automobiles are good
for human health. It is well-documented, however, that a sedentary lifestyle and automobile
exhaust do not make a person healthy. Instead, increased prosperity has increased both the
purchasing power of individuals and enabled advances in medicine that have increase our lifes-
pans. To summarize, one must be careful when interpreting correlation: a weak one does not
mean there is no relationship, and a strong one does not mean that one variable causes the
changes in the other.

There is another important measure of the quality of linear regression: the residual plot. The
residuals are the differences between the predicted values of the response variable and the
actual value from the data. As stated above, linear regression assumes that there is a linear
relationship between the two variables, plus some uncorrelated noise added to the values of the
response variable. If that were true, then the plot of the residuals would look like a vaguely
spherical blob, with a mean value of 0 and no discernible trend (e.g. no increase of residual
for larger 𝑥 values). Visually assessing residual plots is an essential check on whether linear
regression is a reasonable fit to the data in addition to the 𝑟2 value.

5.2.5 Exercises

Figure 5.2.5 shows scatterplots of the rate of oxygen consumption (VO) and heart rate (HR)
measured in two macaroni penguins running on a treadmill (really). The authors performed
linear regression on the data and found the following parameters: 𝑉 𝑂 = 0.23𝐻𝑅 − 11.62
(penguin A) and 𝑉 𝑂 = 0.25𝐻𝑅−20.93 (penguin B). The datasets have the standard deviations:
𝜎𝑉 𝑂 = 6.77 and 𝜎𝐻𝑅 = 28.8 (penguin A) and 𝜎𝑉 𝑂 = 8.49 and 𝜎𝐻𝑅 = 30.6 (penguin B).

102

1. Find the dimensions and units of the slope and the intercept of the linear regression for
this data (the units of HR and VO are on the plot).

2. Data set B has a larger slope than data set A. Does this mean the correlation is higher
in data set B than in A? Explain.

3. Calculate the correlation coefficients for the linear regressions of the two penguins; ex-
plain how much variance is explained in each case.

4. Re-calculate the slopes of the two linear regressions if the explanatory and response
variables were reversed. Does changing the order of variable affect the correlation?

5.3 Linear regression using R

We now have the tools to compute the parameters of the best-fit line, provided we can calculate
the means, variances, and covariance of the two variable data set. Of course, the best way to
do all this is to let a computer handle it. The function for calculating linear regression in R
is lm(), which outputs a bunch of information to a variable called myfit in the script below.
The slope, intercept, and other parameters can be printed out using the summary() function.
In the script below you see a bunch of information, but we are concerned with the ones in the
first column correspond to the best fit intercept (-166.2847) and the slope (2.4432). You can
check that they correspond to our formulas by computing the covariance, the variances, and
the means of the two variables:

103

myfit <- lm(HR ~Temp, my_data)
summary(myfit)
a<-cov(my_dataHR,my_dataTemp)/var(my_data$Temp)
print(a)
b<-mean(my_data$HR)-a*mean(my_data$Temp)
print(b)

Here Temp and HR are the explanatory and response variables, respectively, and my_data is
the name of the data frame they are stored in. The best fit parameters are stored in myfit,
and the line can be plotted using abline(myfit). The script below shows how to calculate a
linear regression line and then plot it over a scatterplot in R, and the result is shown in figure
??a.

#| label: linreg-HRTemp
plot the data and regression line
plot(my_data$Temp, my_data$HR,main= 'scatterplot and linear regression line')
abline(myfit)
plot the residuals
HRresiduals <- resid(myfit)
plot(data$Temp, HRresiduals,main='residuals plot')
abline(0,0)

However, what does this mean about the quality of the fit? Just because we found a line to
draw through a scatterplot does not mean that this line is meaningful. In fact, looking at the
plot, there does not seem to be much of a relationship between the two variables. There are
various statistical measures for the significance of linear regression, the most important one
relies on the correlation between the two data sets. Look again at the summary statistics for
the data set of heart rates and temperatures. There are several different statistics here, and
the one that we care about is the 𝑟2, which is reported here as ‘Multiple R-squared’. This
number tells us that the linear regression accounts for only about 6% of the total variance of
the heart rate. In other words, there is no significant linear relationship in this data set.

As mentioned in section 5.2, the other important check is plotting the residuals of the data set,
after the linear fit is subtracted. You see the result in figure ??b, showing that the residuals
do not have any pronounced pattern. So it is reasonable to conclude that linear regression was
a reasonable model to which to fit the data. The low correlation is because data seem to have
little to no relationship, not because there is some complicated nonlinear relationship.

Here is an example of a linear regression performed and the line plotted over the basic R
plot. Note that lm() uses the following syntax to indicate which variable is which: lm(Y ~ X)
(where Y is the response variable and X is the explanatory variable.)

104

data("Galton")
myfit <- lm(child ~ parent, Galton)
summary(myfit)
print(paste("The best-fit slope is: ", myfit$coefficients[2]))
print(paste("The best-fit intercept is: ", myfit$coefficients[1]))

The summary outputs a whole bunch of information that is returned by the lm() function,
as the object myfit. The most important are the intercept and slope, which may be printed
out as shown above, and the R-squared parameter, also called the coefficient of determination.
The value of R-squared is not accessible directly in myfit, but it is printed out in the summary
(use multiple R-squared for our assignments.)

The actual best-fit line can be plotted as follows over a scatterplot of the data; notice that
abline can take myfit as an input and use the slope and intercept:

#Overlay the best-fit line on the base R plot
plot(Galton$parent, Galton$child, xlab='mid-parent height (inches)', ylab='child height (inches)')
abline(myfit)

After performing linear regression it is essential to check that the residuals obey the assump-
tions of linear regression. The residuals are the difference between the predicted response
variable values and the actual values of the response variable, in this case the child height.
The residuals are contained in the object myfit as variable residuals:

plot(Galton$parent, myfit$residuals, xlab='mid-parent height (inches)', ylab='residuals (inches)')
abline(0,0)

It appears that the residuals meet the assumptions of being independent of measurement
(shapeless scatterplot), are centered at zero, and look roughly normally distributed, although
that can be checked more carefully using other tools.

5.4 Regression to the mean

The phenomenon called regression to the mean is initially surprising. Francis Galton first
discovered this by comparing the heights of parents and their offspring. Galton took a subset
of parents who are taller than average and observed that their children were, on average,
shorter than their parents. He also compared the heights of parents who are shorter than
average, and found that their children were on average taller than their parents. This suggests
the conclusion that in long run everyone will converge closer to the average height - hence
“regression to mediocrity”, as Galton called it [?].

105

64 66 68 70 72

62
66

70
74

mid−parent height (inches)

ch
ild

 h
ei

gh
t (

in
ch

es
)

(a) Child height (response variable) vs parent height
(explanatory variable)

62 64 66 68 70 72 74

64
68

72

child height (inches)m
id

−
pa

re
nt

 h
ei

gh
t (

in
ch

es
)

(b) Parent height (response variable) vs child height
(explanatory variable)

Figure 5.2: Galton data on heights of parents and of children as scatterplots. The dotted red
lines show the identity line y=x and the solid black line is the linear regression.

But that is not the case! The parents and children in Galton’s experiment had a very similar
mean and standard deviation. This appears to be a paradox, but it is easily explained using
linear regression. Consider two identically distributed random variables (𝑋, 𝑌) with a positive
correlation 𝑟. The slope of the linear regression is 𝑚 = 𝑟𝜎𝑌 /𝜎𝑋 and since 𝜎𝑌 = 𝜎𝑋, the slope
is simply 𝑟. Select a subset with values of 𝑋 higher than �̄�, and consider the mean value of
𝑌 for that subset. If the slope 𝑚 < 1 (the correlation is not perfect), then the mean value of
𝑌 for that subset is less than the mean value of 𝑋. Similarly, for a subset with values of 𝑋
lower than �̄�, the mean value of 𝑌 for that subset is greater than the mean value of 𝑋, again
as long as the slope is less than 1.

Figure ?? shows Galton’s data set (available in R by installing the package ‘HistData’) along
with the linear regression line and the identity like (𝑦 = 𝑥). If each child had exactly the
same height as the parents, the scatterplot would lie on the identity line. Instead, the linear
regression lines have slope less than 1 for both the plot with the parental heights as the
explanatory variable and for the plot with the variables reversed. The correlation coefficient
𝑟 does not depend on the order of the variables; so using the equation 5.6 we can see the
difference in slopes is explained by the two data sets having different standard deviations,
and reversing the explanatory and response variables results in reciprocation of the ratio of
standard deviations. The children’s heights have a higher standard deviation, which is likely
an artifact of the experiment. In the data set the heights of the two parents were averaged
to take them both into account, which substantially reduces the spread between male and
female heights. To summarize, although the children of taller parents are shorter on average
than their parents, and the children of shorter parents are taller than their parents, the overall
standard deviation does not decrease from generation to generation.

106

5.4.1 Discussion questions

Please read the paper on measuring the rate of de novo mutations in humans and its relation-
ship to paternal age [?].

1. What types of mutations were observed in the data set? What were the most and the
least common?

2. The paper shows that both maternal and paternal age are positively correlated with
offspring inheriting new mutations. What biological mechanism explains why paternal
age is the dominant factor? What could explain the substantial correlation with maternal
age?

3. Is linear regression the best representation of the relationship between paternal age and
number of mutations? What other model did the authors use to fit the data, and how
did it perform?

4. What do you make of the historical data of paternal ages the authors present at the end
of the paper? Can you postulate a testable hypothesis based on this observation?

107

Tutorial 5: Linear regression

Learning goals

In this tutorial you will learn to:

• Make scatterplots with linear regression lines
• Interpret the output of linear regression
• Examine the residuals of linear regression

Best-fit parameters

Linear regression

Linear regression is a method for finding the best-fit line to a two-variable data set.
One of the variables is called the explanatory (independent) variable and the other is
called the response (dependent) variable. The best-fit line is defined as the line whose
graph passes the closest to the data points as measured by the sum of squared differences
between the predicted and observed response variable values.

Here is an example of a linear regression performed and the line plotted over the scatterplot.
The R function for linear regression lm() has two required inputs: an expression in the form
of Response ~ Explanatory and the name of the data frame (if the variables are part of one).
The script below uses the data set of heart rates from students from the BIOS 20151 classes,
generates a plot of the data, calls lm() and assigns the output to a variable fit_heart and
then plots the resulting best-fit line using the function abline():

heart_rates <- read.csv(file = "https://raw.githubusercontent.com/dkon1/quant_life_quarto/main/data/HR_data_combined.csv")
plot(heart_rates$Rest2, heart_rates$Ex2, xlab = 'Resting heart rate (bpm)', ylab = 'Exercise heart rate (bpm)')
fit_heart <- lm(Ex2 ~ Rest2, data = heart_rates)
abline(fit_heart)

The function lm() calculated the slope and intercept of the best-fit line. These values are
bundled into the output of the function, which we assigned to fit_heart. This script prints
them out:

108

options(digits = 3)
cat("The intercept and slope of the best-fit line are: ")
print(fit_heart$coefficients)

As you can see, both parameters are part of the vector variable coefficients. If needed, they
can be accessed separately by using the indexing notation:

print(fit_heart$coefficients[1])

print(fit_heart$coefficients[2])

interpreting the output of linear regression

We have seen how to obtain the slope and the intercept, but there’s a lot more in the linear
regression output! If you run these scripts in RStudio you will see the object fit_heart in the
Environment window (by default, top right). If you double click on it, you’ll see that it’s a
list object that contains many variables (like a data frame, except messier because the different
variables don’t have the same length). Let us use the data set from the palmerpenguins
package that we saw in Tutorial 3 and run linear regression on body_mass_g as a function of
bill_lenth_mm:

library(palmerpenguins)
pen_fit <- lm(body_mass_g ~ bill_length_mm, penguins)
summary(pen_fit)

As you see, the function summary() gives us the key information, including the values of the
parameters (plus some statistics to indicated the uncertainly around those values) and the
R-squared, also known as the coefficient of determination. While the slope and the intercept
tell which line provides the best fit, they tell us nothing about how good the fit is.

Coefficient of determination (R-squared)

The coefficient of determination or 𝑅2 of a linear regression is a measure of the
goodness of fit of the line to the data. Numerically, it represents the fraction of variance
of the response variable that is explained by the model.

The value of R-squared is not accessible directly in pen_fit, but it is printed out in the
summary under the name of Multiple R-squared, together with Adjusted R-squared, which
is a slightly modified version. To print out the coefficient of determination by itself, we have
to use summary() with variable name r.squared:

109

print(summary(pen_fit)$r.squared)

As above, we can plot the best-fit line over a scatterplot of the data by using abline() with
pen_fit as an input:

Overlay the best-fit line on the base R plot
plot(penguins$bill_length_mm, penguins$body_mass_g, xlab='bill length (mm)', ylab='body mass (g)', main = "Linear regression on penguin measurements")
abline(pen_fit)

plotting the residuals

After performing linear regression it is essential to check that the residuals obey the assump-
tions of linear regression. The residuals are the difference between the predicted response
variable values and the actual values of the response variable, in this case the penguin body
mass. The residuals are contained in the object pen_fit as a variable named residuals.
Residuals are the leftover errors of the response variable, so one way to visualize them is to
plot them against the explanatory variable. The values of the explanatory variables which
were used for the linear regression are also stored in the object pen_fit within the variables
model, which contains the two variables passed to lm():

plot(pen_fit$model$bill_length_mm, pen_fit$residuals, xlab='bill length (mm)', ylab='residuals (g)')
abline(0,0)

NOTE: I used the values of bill length from the pen_fit object because several of the values
in the original data set had missing values (NA) and were discarded by lm(), so there are no
corresponding residuals for those values and the plot() function would have failed if I had
used the penguins$bill_length_mm instead as the x-variable.

By visual inspection it seems that the residuals satisfy the assumptions of being indepen-
dent of measurement (shapeless scatterplot), are centered at zero, and look roughly normally
distributed, although that can be checked more carefully using other tools.

For an example of these fancy tools, you can use plot() with the output of a linear regression,
which will produce several diagnostic plots to make sure the residuals obey the assumptions
of normally distributed with equal variance:

plot(pen_fit)

110

Exercises:

1. Calculate the mean and standard deviation of the residuals from the previously calculated
linear regression output pen_fit and use print() to report them:

Hint

Use functions mean() and sd(); specify the dataframe as well as variable, e.g. df$var;
put these function inside print().

2. Calculate and print the fraction of variance explained by the linear regression by dividing
the variance of the predicted values of the previously calculate linear regression object
pen_fit (in the variable fitted.values) by the variance of the observed values (in the
variable model$XXX where XXX stands for the name of the response variable).

Hint

Calculate the ratio of variances inside the print() function; make sure that all the paren-
theses are matched correctly

3. Perform linear regression on the penguin data set with the bill_depth_mm as the ex-
planatory variable and body_mass_g as the response variable and assign it to variable
fit_pen. Print out the coefficient of determination of this linear regression.

Hint

Need to first assing the output of regression, e.g. fit_pen <- lm(...); follow the
example above of printing out the R-squared.

4. Plot the residuals from the linear regression as a function of the independent variable as
contained in the fit_pen object within the variable model$XXX where XXX is the name
of the explanatory variable.

111

Hint

Follow the example above of plotting residuals using the output of lm, e.g fit$residuals

112

6 Independence

Unconnected and free
No relationship to anything.
– They Might Be Giants, Unrelated Thing

In the first part of the book we learned how to describe data sets and probability distributions
of random variables. So far we have not discussed how two or more variables may influence
each other, and the next four chapters will be devoted to relationships between two variables.
Many experiments in biology result in observations that naturally fall into a few categories, for
example: sick or healthy patients, presence or absence of a mutation, etc. The resulting data
sets are called categorical. Unlike numerical data sets that we will investigate later in chapters
8 and 9, they are not usually represented by numbers. Although it is possible, for instance, to
denote mutants with the number 1 and wild type with 0, such designation does not add any
value. Categorical variables require different tools for analysis than numerical ones; one cannot
compute a linear regression between two categorical variables, because there is no meaningful
way to place categories on axes. In this chapter you will learn the following:

• notion of conditional probability

• definition of independence for events and random variables

• produce a categorical data table

• compute a table of expected values based on independence

6.1 Contingency tables to summarize data

What kind of relationship can there be between categorical variables? It cannot be expressed
in algebraic form, because without numeric values we cannot talk about a variable increasing
or decreasing. Instead, the question is, does one variable being in a particular category have an
effect on which category the second variable falls into? Let us say you want to know whether
the age of the mother has an effect on the child having trisomy 21 (a.k.a. Down’s syndrome),
a genetic condition in which an embryo receives three chromosomes 21 instead of the normal
two. The age of the mother is a numerical variable, but it can be classified into two categories:
less than 35 and 35 or more years of age. The trisomy status of a fetus is clearly a binary,
categorical variable: the fetus either has two chromosomes 21 or three.

113

The data are presented in a two-way or contingency table, which is a common way of presenting
a data set with two categorical variables. The rows in such tables represent different categories
of one variable and the columns represent the categories of the other, and the cells contain
the data measurements of their overlaps. Table ?? shows a contingency table for the data
set on Down’s syndrome and maternal age, in which the rows represent the two categories
of maternal age and the columns represent the presence or absence of the syndrome. Each
internal cell (as opposed to the total counts on the margins) corresponds to the number of
measurement where both variables fall into the specified category, for instance the number of
fetuses with the syndrome and a mother under 35 is 28.

Maternal age No DS DS Total
< 35 29,806 28 29,834
>= 35 8,135 64 8,199
Total 37,941 92 38,033

Contingency table for maternal age and incidence of Down’s syndrome. Numbers represent
counts of patients belonging to both categories in the row and the column. DS = Down’s
syndrome. From [?].

Once the data are organized into a contingency table, we can address the main question
stated above: does the age of the mother have an effect on whether a fetus inherits three
chromosomes 21? Perhaps the first approach that suggests itself is to compare the fraction of
mothers carrying a fetus with DS for the two age categories. In this case, the fraction for the
under-35 category is 28/29834 ≈ 0.00094, while for the 35-and-over category the fraction is
64/8199 ≈ 0.0078. The two fractions are different by almost a factor of 10, which suggests a
real difference between the two categories. However, all data contain an element of randomness
and a pinch of error, thus there needs to be quantifiable way of deciding what constitutes a
real effect. But to determine if there is a relationship, we first have to define what it means
to not have one.

6.2 Conditional probability

Let us return to the abstract description of probability introduced in section 8.1. There we used
the notion of sample space and its subsets, called events, to describe collections of experimental
outcomes. Suppose that you have some information about a random experiment that restricts
the possible outcomes to a particular subset (event). In other words, you have ruled out some
outcomes, so the only possible outcomes are those in the complementary set. This will affect
the probability of other events in the sample space, because your information may have ruled
out some of the outcomes in that event as well.

114

Definition

For two events 𝐴 and 𝐵 in a sample space Ω with a probability measure 𝑃 , the probability
of 𝐴 given 𝐵, called the conditional probability is defined as:

𝑃(𝐴|𝐵) = 𝑃(𝐴&𝐵)
𝑃(𝐵)

𝐴&𝐵 represents the intersection of events 𝐴 and 𝐵, also known as 𝐴 and 𝐵, the event that
consists of all outcomes that are in both 𝐴 and 𝐵. In words, given the knowledge that an
event 𝐵 occurs, the sample space is restricted to the subset 𝐵, which is why the denominator
in the definition is 𝑃 (𝐵). The num‘erator is all the outcomes we are interested in, which is 𝐴,
but since we are now restricted to 𝐵, the numerator consists of all the elements of 𝐴 which
are also in 𝐵, or 𝐴&𝐵. The definition makes sense in two extreme cases: if 𝐴 = 𝐵 and if 𝐴
and 𝐵 are mutually exclusive:

• 𝑃(𝐵|𝐵) = 𝑃 (𝐵&𝐵)/𝑃(𝐵) = 𝑃(𝐵)/𝑃(𝐵) = 1 (probability of 𝐵 given 𝐵 is 1)
• if 𝑃(𝐴&𝐵) = 0, then 𝑃(𝐴|𝐵) = 0/𝑃(𝐵) = 0 (if 𝐴 and 𝐵 are mutually exclusive, then

probability of 𝐴 given 𝐵 is 0)

Figure 6.1: A Venn diagram of the sample space of all people with two events: tall people
(𝐴) and those who like tea (𝐵) with probabilities of 𝐴, 𝐵 and their intersection
indicated.

There are some common misunderstandings about conditional probability, which are usually
the result of discrepancies between everyday word usage and precise mathematical terminology.

115

First, the probability of 𝐴 given 𝐵 is not the same as probability of 𝐴 and 𝐵. These concepts
seem interchangeable because the statement “what are the odds of finding a tall person who
likes tea?” is hard to distinguish from ‘’what are the odds that a person who is tall likes tea?”
The difference in these concepts can be illustrated using a Venn diagram, shown in figure ??.
Based on the probabilities indicated there, the probability of randomly selecting a person who
is both tall and likes tea is 𝑃(𝐴&𝐵) = 0.1, while the probability that a tea drinker is tall is
𝑃(𝐴|𝐵) = 0.1/0.3 = 1/3, which are different values.

A similar misconception is to be cavalier about the order of conditionality. In general,
𝑃(𝐴|𝐵) ≠ 𝑃 (𝐵|𝐴), except in special cases. Going back to the illustration in figure ??, the
probability that a tea drinker is tall 𝑃(𝐴|𝐵) = 1/3 is the different than the probability that
a tall person is a tea drinker 𝑃(𝐵|𝐴) = 0.1/0.5 = 0.2. One must take care when interpreting
written statements to carefully distinguish what is known a priori and what remains under
investigation. In the statement 𝑃(𝐴|𝐵), 𝐵 represents what is known, and 𝐴 represents what
is still to be investigated.

Example. Let us return to the data set in the previous section. Data table ?? describes a
sample space with four outcomes and several different events. One can calculate the probability
of a fetus having Down’s syndrome (event) based on the entire data set of 38,033 mothers, and
92 total cases of DS, so the probability is 92/38, 033 ≈ 0.0024. Similarly, we can calculate the
probability of a mother being above 35 as 8, 199/38, 033 ≈ 0.256.
Now we can calculate the conditional probability of a mother over 35 having a DS fetus, but first
we have to be clear about what information is known and what is not. If the age of the mother
is known to be over 35 (mature age or MA), then we calculate 𝑃(𝐷𝑆|𝑀𝐴) = 64/8, 199 ≈ 0.008.
Notice that the denominator is restricted by the information that the mother is over 35, and
thus only women in that category need to be considered for the calculation.

On the other hand, if we have the information that the fetus has DS, we can calculate the
reversed conditional probability, what is the probability that a fetus with DS has a mother
above age 35? 𝑃(𝑀𝐴|𝐷𝑆) = 64/92 ≈ 0.7. Notice that is both calculations the numerators are
the same, since they both are the intersection between the two events, but the denominators
are different, because they depend on which event is given.

6.2.1 Exercises

In figure ?? there is a table of genotypes from the classic Mendelian experiment with genetics
and color of pea flowers. The parents are both heterozygous, meaning each has a copy of
the dominant (purple) allele B and the recessive (white) allele b. The possible genotypes of
offspring are shown inside the square, and all four outcomes have equal probabilities. Based
on this information, answer the following questions.

1. What is the probability of an offspring having purple flowers? white flowers?

116

Figure 6.2: Punnet square of a cross of two heterozygous pea plants showing the possible
genotypes and phenotypes of offspring (figure by Madprime in public domain via
Wikimedia Commons.)

117

2. What is the probability of an offspring having genotype 𝐵𝐵? genotype 𝐵𝑏? genotype
𝑏𝑏?

3. What is the probability of an offspring having genotype 𝐵𝐵, given that its flowers are
purple?

4. What is the probability of an offspring having genotype 𝐵𝑏, given that its flowers are
purple?

5. What is the probability of an offspring having genotype 𝐵𝐵, given that its flowers are
white?

6. What is the probability of an offspring having genotype 𝐵𝑏, given that its flowers are
white?}

7. What is the probability of an offspring having purple flowers, given that its genotype is
𝐵𝐵?

6.3 Independence of events

We first encountered the notion of independence in chapter 3, where two events were said to be
independent if they did not affect each other. The mathematical definition uses the language
of conditional probability to make this notion precise. It says that 𝐴 and 𝐵 are independent
if given the knowledge of 𝐴, the probability of 𝐵 remains the same, and vice versa.

Definition

Two events 𝐴 and 𝐵 are independent if 𝑃(𝐴|𝐵) = 𝑃(𝐴), or equivalently if 𝑃(𝐵|𝐴) =
𝑃(𝐵).

Independence is not a straightforward concept. It may be confused with mutual exclusivity, as
one might surmise that if 𝐴 and 𝐵 have no overlap, then they are independent. That however,
is false by definition, since 𝑃(𝐴|𝐵) is 0 for two mutually exclusive events. The confusion stems
from thinking that if 𝐴 and 𝐵 are non-overlapping, then they do not influence each other.
But the notion of influence in this definition is about information; so of course if 𝐴 and 𝐵 are
mutually exclusive, the knowledge that one of them occurs has an influence of the probability
of the other one occurring.

A useful way to think about independence is in terms of fractions of outcomes. The probability
of 𝐴 is the fraction of outcomes out of the entire sample space which is in 𝐴, while the
probability of 𝐴 given 𝐵 is the fraction of outcomes in 𝐵 which are also in 𝐴. The definition
of independence equates the two fractions, therefore, if 𝐴 occupies 1/2 of sample space, in
order for 𝐴 and 𝐵 to be independent, events in 𝐴 must constitute 1/2 of the event 𝐵. In the
illustration in figure ??, the fraction of tall people is 0.5 of the sample space, but the fraction

118

of tea-drinkers who are tall is 0.1/0.3 = 1/3. Since the two fractions are different, 𝐴 and 𝐵
are not independent.

Figure 6.3: Example of two events inside a sample space that are mutually exclusive

6.3.1 Exercises

Consider three examples of events and their intersections in figure ??.

1. Based on the two non-overlapping (mutually exclusive) events, calculate the conditional
probability 𝑃(𝐴|𝐵) and compare it with 𝑃(𝐴). Are 𝐴 and 𝐵 independent?

2. Based on the two partially overlapping events, calculate the conditional probability
𝑃(𝐴|𝐵) and compare it with 𝑃(𝐴). Are 𝐴 and 𝐵 independent?

3. Based on the two completely overlapping events, calculate the conditional probability
𝑃(𝐴|𝐵) and compare it with 𝑃(𝐴). Are 𝐴 and 𝐵 independent?

6.3.2 product rule

The definition of independence is abstract, but it has a direct consequence of great computa-
tional value. From the definition of conditional probability, 𝑃(𝐴|𝐵) = 𝑃(𝐴 ∩ 𝐵)/𝑃(𝐵), and if
𝐴 and 𝐵 are independent then 𝑃(𝐴|𝐵) can be replaced with 𝑃(𝐴), leading to the expression

119

Figure 6.4: Example of two events inside a sample space that are partially overlapping

Figure 6.5: Illustration of two events inside a sample space where one is entirely contained in
the other

120

𝑃(𝐴) = 𝑃(𝐴&𝐵)/𝑃 (𝐵). Multiplying both sides by 𝑃(𝐵) gives us the formula called the prod-
uct rule, which states that for two independent events the probability of both of them occuring
is the product of their separate probabilities:

𝑃(𝐴&𝐵) = 𝑃(𝐵)𝑃(𝐴)

The product rule is extremely useful for computing probability distributions of complicated
random variables. Recall that the binomial distribution, which we saw in section 4.2 is based
on a string of 𝑛 Bernoulli trials which are independent of each other, which allows the calcu-
lation of the probability of a string of successes and failures, or heads/tails, etc. In practice,
independence between processes is rarely true in the idealized mathematical sense. However,
computing the probability of two random variables without independence is extremely difficult,
so it is useful to make the independence assumption and then test it against the data. If it
stands up, you have a good predictive model, and if it does not, you have learned that two
processes are somehow linked, which is very useful.

6.4 Independence of variables

The product rule enables us to extend the notion of independence from events to variables.
The concepts of independence is the same in both contexts, since the probability of a value
𝑥 of a random variable 𝑋 corresponds to the probability of the event that gets mapped to 𝑥
by the variable. In order to make independence applicable to variables, the condition must
hold true for all possible values of both random variables. That way, knowing the value of one
variable has no effect on the probability of the other. In order to make it simpler to calculate,
we will use the product rule as the equivalent condition for independence:

Definition

Two random variables 𝑋 and 𝑌 are independent if for all possible values of 𝑋 and 𝑌 it
is true that

𝑃 (𝑋 = 𝑎&𝑌 = 𝑏) = 𝑃(𝑋 = 𝑎)𝑃(𝑌 = 𝑏)

This allows us to address the question posed at the beginning of the chapter: how can one
determine whether a data set has independent variables? The definition allows us to calculate
what we would expect if the variables were independent. Given a data set in the form of a
contingency table, such as table ??, we can first calculate the probabilities of the two variables
separately, and then from that predict the probabilities of the two variables together.

Example. Let us calculate the expected probabilities and frequencies of Down’s syndrome
in pregnant women in the two age categories. First, compute the probabilities of having
Down’s syndrome (and not having it), based on all the pregnancies in the data set: 𝑃(𝐷𝑆) =
92/38033 ≈ 0.002419; the complementary probability is 𝑃(𝑛𝑜 𝐷𝑆) = 1 − 𝑃(𝐷𝑆). Similarly,

121

we can calculate the probability that a pregnant woman is 35 or over, based on the entire
data set (let’s denote this event 𝑀𝐴 for mature age). 𝑃(𝑀𝐴) = 8199/38033 ≈ 0.21558; the
complementary probability is 𝑃(𝑌 𝐴) = 1 − 𝑃(𝑀𝐴) (𝑌 𝐴 stands for young age).

These separate probabilities were calculated from the data, and now we can use them to calcu-
late the predicted probabilities of different outcome, based on the assumption of independence.
The probability of a mature-age woman having a pregnancy with Down’s syndrome, based on
the product rule is 𝑃 (𝑀𝐴&𝐷𝑆) ≈ 0.0024 × 0.216 = 0.000518. Similarly, we can calculate the
probabilities of the other three outcomes: $P(YA & DS) �0.0019 $; 𝑃(𝑀𝐴&𝑛𝑜 𝐷𝑆) ≈ 0.2156;
𝑃(𝑌 𝐴&𝑛𝑜 𝐷𝑆) ≈ 0.782.
These probabilities are the predictions based on the assumption that the two variables are
independent. To compare the predictions with the data, we need to take one more step:
convert the probabilities into counts, or frequencies of each occurrence. Since the probability
is a fraction out of all outcomes, to generate the predicted frequency we need to multiply the
probability by the total number of data points, in this case pregnant patients. The results of
this calculation are seen in table ?? with expected frequencies shown instead of experimental
observations.

Maternal age No DS DS Total
< 35 29,761.8 72.2 29,834
>= 35 8,179.2 19.8 8,199
Total 37,941 92 38,033

Expected frequencies of Down’s syndrome for two different age groups of mothers, assuming
that age and Down’s syndrome are independent.

Notice that expected frequencies do not need to be integers, because they are the result of
prediction and not a data measurement. Now that we have a prediction, we can compare it
with the measurements in the data table ??. The numbers are substantially different, and we
can see that the predicted frequency of Down’s syndrome for women under 35 is larger than
the frequencies for women at or above 35, due to the larger fraction of patients in the younger
age group. We can calculate the differences between the observed and expected contingency
tables to measure how much reality differs from the assumption of independence:

Maternal age No DS DS Total
< 35 44.2 -44.2 29,834
>= 35 -44.2 44.2 8,199
Total 37,941 92 38,033

Differences between the observed frequencies of Down’s syndrome for different maternal ages
and the expected frequencies based on the assumption of independence.

122

The table of differences shows that the observed frequency of DS in the data set are higher
than expected by 44.2 for women above 35 years of age and is lower than expected by the
same number for women below age 35. This demonstrates that mathematically speaking, the
two variables of age and DS are not independent.

However, real data is messy and subject to randomness of various provenance. First, there is
sampling error that we explored in chapter 9, which means that samples from two perfectly
independent variables can and will differ from expected frequencies. Second, measurement
errors or environmental noise can contribute more randomness to the data. Thus, simply
checking that observed frequencies are different from expected is not enough to conclude that
the variables are not independent. We need a method to decide what scale of differences is
enough to declare that there is an effect e.g. of maternal age on the likelihood of DS. To do this,
we leave the cozy theoretical confines of probability and venture into the wild and treacherous
world of statistics.

123

7 Hypothesis testing

Sometimes I’m right and I can be wrong
My own beliefs are in my song.
– Sly and the Family Stone, Everyday People

This chapter introduces hypothesis testing and explains how to evaluate the results. This
fundamentally involves two steps: stating the hypothesis and then making the binary decision
whether to reject it or not. Although such a binary approach is necessarily reductive, there
are many situations that make it necessary: deciding whether to approve a drug or start a
treatment, for example. Much of the scientific method is based on hypothesis testing: scientists
formulate an idea (hypothesis), then accumulate data that can challenge it, and if the data
contradict the hypothesis, they discard it (the hypothesis, not the data!) No hypothesis in
science is ever proven in an absolute sense, which is why it is fundamentally different from
mathematics. A hypothesis that has survived many tests and was found to be consistent with
all available observations becomes a theory, like the theory of gravity or of evolution. But
unlike a theorem, a scientific theory is not certain, and if solid evidence were to surface that
contradicts Newton’s gravitational theory, it would be falsified and thrown out (again, the
theory, not the evidence.)

In this chapter we will describe the framework of hypothesis testing and apply it to the specific
task of deciding whether two variables are independent. After reading it you will know how
to:

• Explain the difference between the truth of the hypothesis and a test result
• Describe four different outcomes of hypothesis testing
• Compute different hypothesis testing error rates
• Explain the meaning of p-value
• Use R to perform the chi-squared test

7.1 Terminology and quality measures

7.1.1 positives and negatives

In the classic statistical framework, the hypothesis to be tested is usually called the null hypoth-
esis, which helpfully rhymes with dull, because it represents the lack of anything interesting,

124

essentially the default state of the system. In order to reject the null hypothesis, the data has
to be substantially different from what is expected as default. For instance, medical tests have
the null hypothesis that the patient is normal/healthy, and only if the results are substantially
different from normal the patient is considered ill. Another common example is the criminal
justice system: a defendant on trial undergoes a binary test where the null hypothesis is in-
nocence. Only if the prosecutor’s evidence is strong, that is, shows guilt beyond a reasonable
doubt, that the null hypothesis is rejected and the defendant found guilty.

Tests are binary, in that there are only two possible decisions: to reject the hypothesis or
to not reject it. We can never truly accept a hypothesis as true, due to the impossibility of
perfect knowledge of the world. The decision to reject a hypothesis is called a positive test
result, which seems backwards, but remember that the default or null hypothesis is a lack of
anything unusual or interesting, so if the data are different from default, it is called a positive
result. The decision to not reject the null hypothesis is called a negative test result. You are
probably familiar with this in a medical context: if you’ve ever been tested for a disease, you
know that a negative result is good news!

7.1.2 types of errors

Hypothesis testing gives us a positive or negative result, but that does not mean that it is
correct. Ideally, we want the test to reject a false null hypothesis, and not reject a true null
hypothesis. These results are called, respectively, a true positive and a true negative. We can
think of the hypothesis as a variable that can be either true or false, and of the test result as
another variable than can be positive or negative. In the language of probability, the correct
test results can be defined as follows:

Definition

For a hypothesis that can be either false (F) or true (T) and a test result that can be
either positive (P) or negative (N), the probabilities of a true positive and true negative
are:

𝑃 (𝑇 𝑃) = 𝑃(𝑃&𝐹); 𝑃 (𝑇 𝑁) = 𝑃(𝑁&𝑇)

However, hypothesis tests are not infallible, and they can make mistakes of two different types.
A test that rejects a true null hypothesis makes a type I error or a false positive error, while
a test that fails to reject a false null hypothesis makes a type II error or a false negative error.
We can again define the probabilities of the two error types as the overlap of the events:

Definition

For a hypothesis that can be either false (F) or true (T) and a test result that can be

125

either positive (P) or negative (N), the two types of errors are:

𝑃(𝐹𝑃) = 𝑃(𝑃&𝑇); 𝑃 (𝐹𝑁) = 𝑃(𝑁&𝐹)

Test result 𝐻𝑂 = 𝐹 𝐻𝑂 = 𝑇
Positive TP FP
Negative FN TN

Table summarizing the four possible results of hypothesis testing, depending on the truth of
null hypothesis 𝐻0 and on the testing result.

7.1.3 test quality measures

Now that we have classified the four outcomes of hypothesis testing, we can define the measures
of quality of a given hypothesis test. This aims to address a practical concern: how much can
you trust a test result? One may answer this question by testing on data where the hypothesis
is known to be either true or false. For example, if there is a “gold standard” method for
determining the presence or absence of disease, one can use that information to measure the
quality of a new test. By performing enough tests, we can measure the frequencies of the four
testing outcomes and then measure the following two quality metrics:

Definition

The sensitivity (or power) of a test is the probability of obtaining a positive result, given
a false hypothesis.

𝑆𝑒𝑛𝑠 = 𝑃(𝑃 |𝐹) = 𝑃(𝑇 𝑃)
𝑃(𝑇 𝑃) + 𝑃(𝐹𝑁)

The specificity of a test is the probability of obtaining the negative result, given a true
hypothesis.

𝑆𝑝𝑒𝑐 = 𝑃(𝑁|𝑇) = 𝑃(𝑇 𝑁)
𝑃(𝑇 𝑁) + 𝑃(𝐹𝑃)

Note that these are conditional probabilities, premised on knowing whether the hypothesis is
actually true. On the other hand, there are two kinds of error rates:

Definition

The type I error rate or false positive rate is the probability of obtaining the positive

126

result, given a true hypothesis (complementary to specificity):

𝐹𝑃𝑅 = 𝐹𝑃
𝑇 𝑁 + 𝐹𝑃

The type II error rate or false negative rate is the probability of obtaining the negative
result, given a false hypothesis (complementary to sensitivity).

𝐹𝑁𝑅 = 𝐹𝑁
𝑇 𝑃 + 𝐹𝑁

Notice that knowledge of sensitivity and specificity determine the type I and type II error
rates of a test since they are complementary events. Of course, it is desirable for a test to
be both very sensitive (reject false null hypotheses, detect disease, convict guilty defendants)
and very specific (not reject true null hypotheses, correctly identify healthy patients, acquit
innocent defendants), but that is impossible in practice. In fact, making a test highly sensitive
(e.g. diagnose every patient with a disease) will make it useless because of it lack of specificity,
and vice versa. In statistics, as in life, tradeoffs are required.

7.1.4 Exercises

Test for TB TB absent TB present
Negative 1739 8
Positive 51 22

Data for TB testing using X-ray imaging

Table ?? shows the results of using X-ray imaging as a diagnostic test for tuberculosis in
patients with known TB status. Use it to answer the questions below.

1. Calculate the marginal probabilities of the individual random variables, i.e. the proba-
bility of positive and negative X-ray test results, and of TB being present and absent.

2. Find the probability of positive result given that TB is absent (false positive rate) and
the probability of a negative result given that TB is absent (specificity).

3. Find the probability of negative result given that TB is present (false negative rate) and
the probability of a positive result given that TB is present (sensitivity).

4. Find the probability that a person who tests positive actually has TB (probability of TB
present given a positive result).

5. Find the probability that a person who tests negative does not have TB (probability of
no TB given a negative result).

127

6. Assuming the test result and the TB status are independent, calculate the expected
probability of both TB being present and a positive X-ray test.}

7. Under the same assumption, calculate the expected probability of both TB being absent
and a positive X-ray test.

7.1.5 rejecting the null hypothesis

Hypothesis testing is one of the most important applications of statistics. People often think
of statistics as a collection of tests to be used for different hypotheses, which is too simplistic,
but different tests do occupy a large fraction of statistics books. In this book we will only dip
a toe into hypothesis testing, and will primarily approach it in a probabilistic (model-centered)
way rather than from a statistical (data-centered) viewpoint. Probability allows us to calculate
the sensitivity and specificity of a test for a given null hypothesis, provided the hypothesis is
simple enough and the data are sampled correctly.

Example: testing whether a coin is fair. Suppose we want to know whether a coin is
fair (has equal probabilities of heads and tails) based on a data set of several coin tosses. How
much evidence do we need in order to reject the hypothesis of a fair coin with a small chance
of making a type I error? What is the corresponding chance of making a type II error, not
detecting an unfair coin?

Let us first consider a data set of two coin tosses. If one is heads and one is tails, it’s obvious
we have no evidence to reject the null hypothesis. But what if both times the coin landed
heads? The probability of this happening for a fair coin is 1/4, which means that if you reject
the null hypothesis based on the evidence, your probability of committing a type I error is
1/4. However, it is very difficult to answer the second question about making a type II error,
because in order to do the calculation we need to know something about the probability of
heads or tails. The hypothesis being false only means that the probability is not 1/2, but it
could be anything between 0 and 1.

Let us see how this test fares for a larger sample size. Suppose we toss a coin 𝑛 times, and
if all 𝑛 come up heads, then we reject the hypothesis that the coin is fair. A fair coin will
come up all heads with probability 1/2𝑛, so that is the rate of false positives for this test. For
example, if a coin came up heads ten times in a row, there is only a 1/1024 probability that
this is the result of a fair coin, so the probability of making a type I error is less than 0.1%. Is
this careful enough? This question cannot be answered mathematically - it depends on your
sense of acceptable risk of making a mistake. Notice that if you decide to use a very stringent
criteria for rejecting a null hypothesis, you will necessarily end up not rejecting more false
hypotheses. Such is the face of us mortals, dealing with imperfect information in an uncertain
world.

This leads us to an important new idea: the probability that a given data set is produced from
the model of the null hypothesis is called the p-value of a test. In the example of coin tosses

128

we just studied, the p-value was 𝑝 = 1/2𝑛. However, what if the data had 9 heads out of 10
tosses? The p-value then would be the probability of obtaining 9 or 10 heads out of 10. This
is because to compute the probability of making a false positive error, we consider all cases
that could have produced the result that is as different from expectation, or even further from
expectation (in this case, 5 heads out of 10) than the data. [?].

Definition

For a data set 𝐷 and a null hypothesis 𝐻0, the p-value is defined as the probability
of obtaining a result as far from expectation or farther than the data, given the null
hypothesis.

The p-value is the most used, misused, and even abused quantity is statistics, so please think
carefully about its definition. One reason this notion is frequently misused is because it is
very tempting to conclude that the p-value is the probability of the null hypothesis being true,
based on the data. That is not true! The definition has the opposite direction of conditionality
- we assume that the null hypothesis is true, and based on that calculate the probability of
obtaining the data. There is no way (according to classical frequentist statistics) of assigning
a probability to the truth of a hypothesis, because it is not the result of an experiment. The
simplest way to describe the p-value is that it is the likelihood of the hypothesis, based on
the data set. This means that the smaller the p-value, the less likely the hypothesis, and one
can be more certain about rejecting the hypothesis. Alternatively, the p-value represents the
probability of making a type 1 error, or rejecting the correct null hypothesis for a particular
data set. These two notions may seem to be in conflict, but they tell the same story: if the
hypothesis is likely, the probability of making a type 1 error is high.

7.2 Chi-squared test

Now we are ready to address the question raised in the previous chapter of testing the inde-
pendence hypothesis based on the table of observations and the calculated table of expected
counts. In order to measure the difference between what is expected for a data table with two
independent variables and the actual observations, we need to gather these differences into a
single number. One can devise several ways of doing this, but the accepted measure is called
the chi-squared statistic and it is defined as follows:

Definition

The chi-squared value for the independence test is calculated on the basis of a two-way
table with 𝑚 rows and 𝑛 columns as the sum of the differences between the observed

129

counts and the computed expected counts as follows:

𝜒2 = ∑
𝑖

(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑖) − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑(𝑖))2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑(𝑖)

The number of degrees of freedom of chi-squared is 𝑑𝑓 = (𝑚 − 1)(𝑛 − 1).

This number describes how far away the data is from what is expected for an independent data
set. Therefore, the larger the chi squared statistic, the larger the differences between observed
and expected frequency, and thus the null hypothesis of independence is less likely. However,
simply obtaining the 𝜒2 is not enough to say whether the two variables are independent. We
need to translate the chi-squared value into the language of probability, that is to ask, what is
the probability of obtaining a data set with a particular 𝜒2 value, if those two variables were
independent.

This question is answered using the chi-squared probability distribution, which describes the
probability of the random variable 𝜒2. Like the normal distribution we saw in section ??
it is a continuous distribution, because 𝜒2 can take any (positive) real value. In another
similarity, the 𝜒2 distribution has an even more complicated functional form than the normal
distribution, so I do not present it here, because it is not enlightening. I will also not share the
derivation of the mathematical form of the distribution, as it is far outside the goals of this text.
In practice, nobody computes either the chi-squared statistic or its probability distribution
function by hand, instead computers handle these chores. The chi-squared distribution has one
key parameter, called the number of degrees of freedom, which was defined above. Depending
on d.f. the distribution changes, specifically for more degrees of freedom the distribution moves
to the right, that is, the chi-squared values tend to be larger.

The chi-squared distribution is used to determine the probability of obtaining a chi-squared
statistic as at least as large as observed, based on the null hypothesis of independence. Figure
?? shows a plot of the chi-squared distribution, as well as the total probability to the right of
an observed 𝜒2. This allows one to use it for the chi-squared test for independence between
random variables, by comparing the p-value obtained from the distribution (by a computer)
against a number called the significance level, which is decided by humans. The significance
value 𝛼 is a threshold that the test has to clear in order to reject the null hypothesis: if the
p-value is less than 𝛼, the independence hypothesis is rejected, otherwise it stands, although
one can never say that the independence hypothesis is accepted.

There is no mathematical or statistical method for determining the appropriate significance
level, it is entirely up to the users to decide how much risk of rejecting a true null hypothesis
they are willing to tolerate. If you choose 0.01, that means you want the likelihood of the
hypothesis to be less than 1% percent in order to reject it. This is entirely arbitrary, and using
a rigid significance level to decide whether a hypothesis is true can lead to major problems
which we will discuss in the next chapter.

130

Figure 7.1: The chi-squared distribution is used to compute the p-value as the total probability
of obtaining a 𝜒2 value at least as far from 0 as observed. (image by Inductiveload
in public domain via Wikimedia Commons)

Like all mathematical models, the chi-squared distribution relies on a set of assumptions. If
the assumptions are violated, then the probability distribution does not apply and the p-value
does not reflect the actual likelihood of the hypothesis. Here are the assumptions:

• the data is from a simple random sample of the population
• the sample size is sufficiently large
• expected cell counts cannot be too small
• the observations are independent of each other

7.3 Examples of data tables

7.3.1 trisomy and pregnancy

Let us return to the data presented in section ??. We noted that the fraction of women in
different age categories carrying fetuses with DS are different, but how certain are we that is
not a fluke? To test the hypothesis of independence, we input the data into R and then run
the chi-squared test:

131

data <- matrix(c(29806, 8135, 28, 64),ncol=2,nrow=2)
test.output <- chisq.test(data)
print(test.output)

Pearson's Chi-squared test with Yates' continuity correction

data: data
X-squared = 122.86, df = 1, p-value < 2.2e-16

This tests of independence between the two variables of maternal age and DS status. The
chi-squared parameter is about 122, reflecting the differences between expected and observed
frequencies. This number us to calculate the p-value, which is very small (the number is
actually caused by machine error). Therefore, the hypothesis can be rejected with a very
small risk of making an error.

7.3.2 stop-and-frisk and race

The practice of New York Police Department dubbed “stop-and-frisk” gave police officers to
power to stop, question, and search people on the street without a warrant. Since the practice
commenced in the early 2000s, it has generated controversy for several reasons. First, the
4th amendment to the U.S. Constitution limits the power of the state to detain and search
citizens, by mandating that officials first obtain a warrant based on “probable cause,” while
based on the Supreme Court interpretation, police are allowed to stop someone without a
warrant provided “the officer has a reasonable suspicion supported by articulable facts” that
the person may be engaged in criminal activity. Exactly what these conditions mean and
whether officers in NYPD always had reasonable suspicions before stopping is a legal matter,
rather than a statistical one, and you can read what federal judge Scheindlin ruled on this
matter here [?].

The second issue raised by stop-and-frisk is whether it violates the principle of equal protection
under the law enshrined in the 14th amendment of the Constitution. The idea that the law
and its agents should treat people of different backgrounds the same, that people can be
punished for their actions, but not for who they are, is deeply rooted in American law and
culture. Critics of stop-and-frisk charge that officers disproportionately stop and search people
of African-American and Hispanic background and therefore violate their constitutional rights
to equal protection. As part of the trial, statistical evidence was introduced about the number
of stops of New Yorkers of different racial backgrounds, how many of those stops resulted in
the use of force, and how many uncovered evidence of criminal activity leading to an arrest.
Let us analyze the data using our tools to address whether race and somebody being “stopped-
and-frisked” are related.

132

The data in the summary of judge Scheindlin’s decision is as follows: between 2004 to 2012,
out of 4.4 million stops, 52% of the people stopped were black, 31% of the people stopped were
Hispanic, and 10% of the people were white. The population of New York according to the
2010 census is approximately 23% black, 29% Hispanic, and 33% white. You may notice that
the fractions are suggestive of a higher probability of stops of African-Americans, and lower
probability of stops of white individuals, but we cannot use fractions to perform a chi-squared
test, because actual counts are necessary to quantify the uncertainty in the testing.

Below I present data in the form of counts for only the calendar year 2011 [?], in the form of
a contingency table with two variables: race/ethnicity and being stopped by police without a
warrant. I have used the census population of New York (http://factfinder2.census.gov) and
its breakdown by race (white only, black only, Hispanic, other). The data are presented in
table ??, and then are input in R and run through a chi-squared independence test.

data_mat <- matrix(c(61805, 2665172, 350743, 1527029, 223740,
2119718, 49436, 1201578),ncol=4,nrow=2)
rownames(data_mat) <- c('stopped', 'not stopped')
colnames(data_mat) <- c('White','Black', 'Hispanic', 'Other')
print(data_mat)

White Black Hispanic Other
stopped 61805 350743 223740 49436
not stopped 2665172 1527029 2119718 1201578

test.output <- chisq.test(data_mat)
print(test.output)

Pearson's Chi-squared test

data: data_mat
X-squared = 429039, df = 3, p-value < 2.2e-16

The results confirm what comparing the percentages suggested: the race of a person in NYC
is not independent of whether or not they get stopped and frisked, with only a tiny probability
that this disparity could have happened by chance. However, this is only the beginning of the
analysis that experts performed for the court trial. Drawing conclusions about motives from
the data is tricky, since two variables may be related without a causal connection. Defenders
of the practice have argued that the racial disparities reflect differences in criminal activity.
The data, however, show that only 6% of the stops result in arrests, and 6% more in court
summons, so the vast majority of those stopped and frisked were not engaged in criminal
activity.

133

Tutorial 6: Data tables and Booleans

Objectives

• calculate two-way data tables from data
• assign matrix variables
• perform the chi-squared test for independence
• logical operators and tests in R
• calculations using Boolean vectors

Data tables and the chi-squared test

matrices and data tables

R has many functions for different tests, including the chi-squared test for independence. To
use it, one first has to input a data set in the form of a two-way table, where each row represents
the values of one random variable, and each column represents the values of the second random
variable. The following script shows how to manually input a 2 by 2 contingency table into a
matrix. In the matrix function, ncol stands for number of columns, and nrow for number of
rows. Notice the order in which the numbers are put into the matrix: down the first column,
then the second, etc. Type help(matrix) for more details.

data_mat <- matrix(c(442,514,38,6),ncol=2,nrow=2)
print(data_mat)

In order to access a specific element of the matrix, just like in vectors, R uses square brackets
and two indices, first one for the row and second for the column. Below are examples of
accessing two elements of the matrix data defined above, and how to reference a particular
element of the matrix.

print(data_mat[1,2])
print(data_mat[2,1])

You can also access an entire row of a matrix by leaving the column index blank, or the entire
column of a matrix by leaving the row index blank:

134

cat("The second row of the matrix is ")
print(data_mat[2,])
cat("The first column of the matrix is ")
print(data_mat[,1])

Chi-squared test

Based on a given data set, how likely is the hypothesis that the two random variables are
independent? It is hard to do by hand (in the old days, you looked it up in a table of chi-
squared values) but R will do it all for us: 1) calculate the expected counts, 2) compute the
chi-squared value for the table, and 3) use the number of degrees of freedom and the chi-
squared value to calculate the p-value of the independence hypothesis based on it. Use the
chisq.test() function, and you will see output like this:

test_output <- chisq.test(data_mat)
print(test_output)

The results are the chi-squared values, the number of degrees of freedom (which depends
on the number of rows and columns in the two-way table) and the p-value. The p-value is
used to decide whether to reject the hypothesis, because it represents the likelihood of the
hypothesis, given the data. In this case, the p-value is pretty small, so it seems relatively
safe to reject the hypothesis of independence. To see the results of the hypothesis test, type
print(test_output), and to access the p-value individually, use test_output$p.value.

Finally, we need to specify the significance level alpha for the hypothesis test. This refers to
the probability of rejecting a true null hypothesis. For instance, if you reject the hypothesis at
𝛼 = 0.05 significance, you are setting a 5% chance of falsely rejecting a correct hypothesis, also
called the rate of false positives. Note that it says nothing about failing to reject an incorrect
hypothesis, also called the rate of false negatives. See the next section of the tutorial for more
explanation of hypothesis testing errors.

generating a data table

Suppose that you have two groups of people: one with genotype A and the other with genotype
B. The question is: does one of the genotypes make a phenotype (e.g. disease) more likely? In
other words, are the variables of genotype and phenotype linked?

The script below generates fake data sets of people with genotype A and genotype B by
simulating random sampling with a given probability. This is done using the function sample()
to generate a vector of simulated people, who have the status N (normal) or D (disease), with
specified probabilities:

135

set.seed(8) # set random seed for reproducibility
samp_size <- 100
dis_states <- c('D', 'N') # disease states 'D' and 'N'
probA <- 0.1 # probability of disease for genotype A
probB <- 0.4 # probability of disease for genotype B
dis_genA <- sample(dis_states, samp_size, replace = TRUE, prob = c(probA, 1-probA)) # generate a vector of disease status
dis_genB <- sample(dis_states, samp_size, replace = TRUE, prob = c(probB, 1-probB)) # generate a vector of disease status

Are the two genotypes linked to disease? We know the true answer, because we set the
probabilities of disease to be different in the two genotypes, but can we tell from the data set?
The following script uses table() to count the number of people with disease and normal in
the vectors dis_genA and dis_genB to produce a two-way table data_mat and runs the chi-
squared test for independence, then prints out all the results (stored in object chisq_result)
and the p-value (in chisq_result$p.value)

data_vec <- c(table(dis_genA), table(dis_genB))
data_mat <- matrix(data_vec, nrow=2, ncol=2)
print(data_mat)
chisq_result <- chisq.test(data_mat) # run chi-squared test
print(chisq_result)
print(chisq_result$p.value) # output the p-value

You see that the chi-squared test returns a low p-value, indicating that it is very unlikely that
the two random variables (genotype and disease) are independent, based on the data set.

This script plots the frequency of healthy and disease in the two groups so you can visually
compare them:

barplot(data_mat, col= c(2,3), main = "Frequency of healthy (green) and disease (red)", names.arg = c("A", "B"), ylab = "frequency")

Exercises

Based on the code in the chunks above perform the following tasks:

1. Add a line to the script below that uses the function table() to print out the number
of people with disease and normal in the genotype B group.

set.seed(5) # set random seed for reproducibility
samp_size <- 100
dis_states <- c('D', 'N') # disease states 'D' and 'N'
probA <- 0.1 # probability of disease for genotype A

136

probB <- 0.4 # probability of disease for genotype B
dis_genA <- sample(dis_states, samp_size, replace = TRUE, prob = c(probA, 1-probA)) # generate a vector of disease status
dis_genB <- sample(dis_states, samp_size, replace = TRUE, prob = c(probB, 1-probB)) # generate a vector of disease status

Hint

Use the example of how to use the function table from the code chunk above; remember
to add print() around the table().

2. In the script below add lines to print out the numbers of people with disease in genotype
A sample and in genotype B sample using the matrix data_mat and indexing.

set.seed(42) # set random seed for reproducibility
samp_size <- 100
dis_states <- c('D', 'N') # disease states 'D' and 'N'
probA <- 0.1 # probability of disease for genotype A
probB <- 0.4 # probability of disease for genotype B
dis_genA <- sample(dis_states, samp_size, replace = TRUE, prob = c(probA, 1-probA)) # generate a vector of disease status
dis_genB <- sample(dis_states, samp_size, replace = TRUE, prob = c(probB, 1-probB)) # generate a vector of disease status

data_vec <- c(table(dis_genA), table(dis_genB))
data_mat <- matrix(data_vec, nrow=2, ncol=2)

Hint

Use the correct row number and column number as indices; remember to add print()
around the table().

3. The script below runs the chisq.test() function, add a line to print out the p-value
from the chi-squared test.

set.seed(77) # set random seed for reproducibility
samp_size <- 200
dis_states <- c('D', 'N') # disease states 'D' and 'N'
probA <- 0.1 # probability of disease for genotype A
probB <- 0.4 # probability of disease for genotype B
dis_genA <- sample(dis_states, samp_size, replace = TRUE, prob = c(probA, 1-probA)) # generate a vector of disease status
dis_genB <- sample(dis_states, samp_size, replace = TRUE, prob = c(probB, 1-probB)) # generate a vector of disease status
data_vec <- c(table(dis_genA), table(dis_genB))
data_mat <- matrix(data_vec, nrow=2, ncol=2)

137

chisq_result <- chisq.test(data_mat) # run chi-squared test

Hint

The p-value is a variable in the chisq_result object, see code above for example.

Logical values and calculations

logical tests

A logical test is an operation that returns either TRUE or FALSE (called Boolean values.) Here
are several examples:

x <- 4
y <- 10
print(x>y)
print(y>x)
print(y==x)

Please note that to ask the question “are x and y equal” the use of double equal signs is
required, because a single equal sign means variable assignment.

Logical tests can be applied to entire vectors all at once. For example, let us assign a vector
variable x and compare all of its values to 5:

x<-0:10
print(x>5)

The first six values of x are not greater than 5, while the last five are greater than 5, which is
indicated by the Boolean output of the test.

calculations using Boolean vectors

Boolean values are distinct from other types of values, such as character strings or numbers.
However, in R they can be used as numbers for computational purposes, with FALSE converting
to 0 and TRUE converting to 1. This allows for convenient counting of the tests performed on
large vectors. For instance, we can use the uniform number generator for integers between 0
and 20, to generate a vector of 10 values, and then ask how many of those values are less than
10 by using sum(), which will count the number of TRUE values:

138

xvals <- sample(1:20,10, replace = TRUE)
print(xvals < 10)
print(paste("The number of random numbers below 10 is", sum(xvals < 10)))

logical operators: AND and OR

One can combine logical values in two common ways: using the AND operator and the OR
operator. The AND operator asks whether both statements are true, while the OR operator
asks if at least one statement is true. R uses the & symbol for AND to determine whether is
true that x is greater than 1 AND than y is less than 5:

x<- 10
y<- 2
print(x>1&y<5)

If we change the value of y so it is greater than five, than the logical & operator will be false:

x<- 10
y<- 10
print(x>1&y<5)

The OR operator uses the symbol | and in the following example it is true because one of the
logical statements is true:

x<- 10
y<- 10
print(x>1|y<5)

Only if both statements are false, the logical OR is false:

x<- 0
y<- 10
print(x>1|y<5)

Both & and | can be applied to vectors of Booleans, where they apply their logical operations
to each corresponding element. For example, if x is a vector of integers from 0 to 10, one can
ask how many of those values are both above 1 and below 5:

x<- 0:10
print(x>1&x<5)
print(sum(x>1&x<5))

139

Exercises:

1. Generate a sample of 100 values from the uniform distribution between 1 and 20 with
replacement, assign it to vector sample_vec and use sum() to calculate how many of
them are equal to 20 and print out that number.

Hint

Check the inputs into the function sample(); the second line should use the logical test
==

2. Generate a sample of 20 values from the binomial distribution with p=0.4 and n=5,
assign it to vector binom_vec and use sum() to calculate how many of them are greater
than 1 and print out that number.

Hint

Check the inputs into the function rbinom(); the second line should use the logical test
>

3. Generate a sample of 20 values from the binomial distribution with p=0.4 and n=5 and
calculate how many of them are BOTH above 1 AND below 4.

Hint

Check the inputs into the function rbinom(); the second line should use the conjunction
& to combine two logical tests

140

8 Prior knowledge and Bayesian thinking

Man can believe the impossible, but man can never believe the improbable.
– Oscar Wilde, The Decay of Lying

In the last few chapters we defined the notion of independence and learned how to perform a
statistical test to determine how likely a data set of two categorical variables is to have come
from two independent random variables. This approach comes from the toolbox of classical
“frequentist” statistics, which is taught in every statistics textbook in the world. It reduces
statistical inference to a binary choice: reject or not reject the null hypothesis, based on the
magic number called the p-value. However, this approach has deep problems, especially when
applied mechanically and without understanding its limitations. Perhaps the most important
limitation is that p-value based hypothesis testing does not incorporate any knowledge into its
decision-making, aside from the given data. This may be reasonable at an early, exploratory
stage of an experiment, but usually one has some prior knowledge about the likelihood of the
hypothesis being tested. This knowledge cannot influence the data and the calculation of the
p-value, of course, but it can have a dramatic effect on the interpretation, or inference one
draws from the test. In this chapter you will learn to do the following:

• explain the effect or prior knowledge on interpretation of an experimental result
• calculate post-test probability based on prior probability, test result, and conditional

probabilities of the test being in error
• use conditional statements to simulate random decisions with a given probability
• explain why conclusions based on binary p-value testing are frequently wrong

8.1 Prior knowledge

Suppose that a patient walks into a doctor’s office, the doctor orders a pregnancy test, and
the results indicate that the patient is pregnant. The doctor consults the published sensitivity
and specificity values (that we defined in the last chapter) to discover, for instance, that 99%
of positive pregnancy tests are correct. The doctor goes back to congratulate the patient with
impending motherhood. Sound very reasonable, doesn’t it? Would it still sound reasonable if
the doctor knew that the patient does not have a uterus (whatever their gender may be)?

This is a slightly absurd example, of course, but it neatly illustrates the central point of this
chapter: prior knowledge has an effect on the inference from a test, no matter how small or

141

large the p-value and the power of the test. For a patient with no uterus, their prior probability
of being pregnant is 0, and that is not changed by a test, no matter how accurate (of course, no
test is 100% accurate). In this case, the positive pregnancy test must have been a false positive,
even though it’s unlikely, since the other possibility - that of a true positive - is impossible.

We all consider prior knowledge before coming to a conclusion. For instance, the credibility
of a statement from a person very much depends on past performance: if the person is a
habitual liar, you probably wouldn’t put much stock in his or her words. On the other hand,
if a person is known to be trustworthy, you might take their statement seriously even if it
surprising. If your significant other has always been transparent and honest, even if you
discover a suspiciously sexy message from someone else on his/her phone, you will listen to
their explanation and consider alternative explanations, in other words, that this was a false
positive. If they had abused your trust in the past, it’s much more likely that this sexy text
is actual evidence of cheating, and maybe it’s time to cut them loose!

In the context of science, the accumulation of knowledge is the basis of building scientific
theories. Nothing in science is ever proven, unlike in mathematics, instead different statements
have different degrees of certainty based on past experience. A theory that has been tested for
years, is considered to have a very high likelihood and may even be called a Law of nature, like
Newton’s laws in physics. If experimental data came along that challenged Newton’s Law of
gravitational attraction (as Einstein’s relativity did) scientists would rightfully treat it much
more skeptically than an experiment that agrees with prior experience. Carl Sagan summarized
the effect of prior knowledge of evaluating evidence with the pithy phrase “extraordinary
claims require extraordinary evidence” - that is, a claim that is highly unlikely based on past
knowledge must be backed up by very strong data.

The perils of ignoring prior knowledge is illustrated in the xkcd cartoon shown in figure ??. In
this case, the “solar detector” lies (makes an error) with probability 1/36, so when it tells you
that the sun exploded, it has only 1/36 probability that it made a false positive error. However,
based on our prior knowledge, the sun is extremely unlikely to blow up or disappear, so the
alternative that the sun exploded and the detector is correct is even less likely. Although
the cartoon portrays this as a disagreement between frequentists and Bayesians, it is more
properly understood as a disagreement between mindless application of frequentist thought
and everyone else.

8.2 Bayes’ formula

In this section we will formalize the process of incorporation of prior knowledge into proba-
bilistic inference by going back to the notion of conditional probability in section 6.2. First,
if you multiply both sides of the definition by 𝑃(𝐵), then we obtain the probability of the
intersection of events 𝐴 and 𝐵:

𝑃(𝐴&𝐵) = 𝑃(𝐴|𝐵)𝑃(𝐵); 𝑃 (𝐴&𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴)

142

Figure 8.1: A cartoon about interpretation of results of an experiment with a known error rate
https://xkcd.com/1132/

143

Second, we can partition a sample space into two complementary sets, 𝐴 and −𝐴, and then
the set of 𝐵 can be partitioned into two parts, that intersect with 𝐴 and −𝐴, respectively, so
that the probability of 𝐵 is

𝑃(𝐵) = 𝑃(𝐴&𝐵) + 𝑃(−𝐴&𝐵)

The two formulas together lead to a very important result called the law of total probability

𝑃(𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴) + 𝑃(𝐵| − 𝐴)𝑃(−𝐴)

It may not be clear at first glance why this is useful: after all, we replaced something simple
(𝑃(𝐵)) with something much more complex on the right hand side. You will see how this
formula enables us to calculate quantities that are not otherwise accessible.

Example: probability of a negative test result. Suppose we know that the probability
of a patient having a disease is 1% (called the prevalence of the disease in a population), and
the sensitivity and specificity of the test are both 80%. What is the probability of obtaining a
negative test result for a randomly selected patient? Let us call 𝑃(𝐻) = 0.99 the probability
of a healthy patient and 𝑃(𝐷) = 0.01 the probability of a diseased patient. Then:

𝑃 (𝑁𝑒𝑔) = 𝑃(𝑁𝑒𝑔|𝐻)𝑃(𝐻) + 𝑃(𝑁𝑒𝑔|𝐷)𝑃(𝐷) =
= 0.8 × 0.99 + 0.2 × 0.01 = 0.794

There is still more gold in the hills of conditional probability! Take the first formula in this
section, which expresses the probability 𝑃(𝐴&𝐵) in two different ways. Since the expressions
are equal, we can combine them into one equation, and by dividing both sides by 𝑃(𝐵), we
obtain what’s known as Bayes’ formula:

𝑃(𝐴|𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴)
𝑃(𝐵)

We can rewrite the denominator in Bayes’ using the Law of total probability so that it can
calculated from conditional probabilities:

𝑃(𝐴|𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴)
𝑃(𝐵|𝐴)𝑃(𝐴) + 𝑃(𝐵| − 𝐴)𝑃(−𝐴)

Bayes’ formula gives us the probability of 𝐴 given 𝐵 from probabilities of 𝐵 given 𝐴 and given
−𝐴, and the prior (baseline) probability of 𝑃(𝐴). This is enormously useful when it is easy to
calculate the conditionals one way and not the other. Among its many applications, it com-
putes the effect of a test result with given sensitivity and specificity (conditional probabilities)
on the probability of the hypothesis being true.

144

8.2.1 positive and negative predictive values

In reality, a doctor doesn’t have the true information about the patient’s health, but rather
the information from the test and hopefully some information about the population where she
is working. Let us assume we know the rate of false positives 𝑃(𝑃𝑜𝑠|𝐻) and the rate of false
negatives 𝑃(𝑁𝑒𝑔|𝐷), as well as the prevalence of the disease in the whole population 𝑃(𝐷).
Then we can use Bayes’ formula to answer the practical question, if the test result is positive,
what is the probability the patient is actually sick? This is called the positive predictive value
of a test. The deep Bayesian fact is that one cannot make inferences about the health of the
patient after the test without some prior knowledge, specifically the prevalence of the disease
in the population:

𝑃(𝐷|𝑃𝑜𝑠) = 𝑃(𝑃𝑜𝑠|𝐷)𝑃(𝐷)
𝑃(𝑃𝑜𝑠|𝐷)𝑃(𝐷) + 𝑃(𝑃𝑜𝑠|𝐻)𝑃(𝐻)

Example. Suppose the test has a 0.01 probability of both false positive and false negatives,
and the overall prevalence of the disease in the population 0.02. You may be surprised that
from an epidemiological perspective, a positive result is far from definitive:

𝑃(𝐷|𝑃𝑜𝑠) = 0.99 × 0.02
0.99 × 0.02 + 0.01 × 0.98 = 0.67

This is because the disease is so rare, that even though the test is quite accurate, there are
going to be a lot of false positives (about 1/3 of the time) since 98% of the patients are
healthy.

We can also calculate the probability of a patient who tests negative of actually being healthy,
which is called the negative predictive value. In this example, it is far more definitive:

𝑃 (𝐻|𝑁𝑒𝑔) = 𝑃(𝑁𝑒𝑔|𝐻)𝑃(𝐻)
𝑃(𝑁𝑒𝑔|𝐻)𝑃(𝐻) + 𝑃(𝑁𝑒𝑔|𝐷)𝑃(𝐷) =

= 0.99 × 0.98
0.99 × 0.98 + 0.01 × 0.02 = 0.9998

This is again because this disease is quite rare in this population, so a negative test result is
almost guaranteed to be correct. In another population, where disease is more prevalent, this
may not be the case.

Figure ?? illustrates all of the possibilities of a binary medical test: positive (P) or negative (N)
for a patient who is either healthy (H) or diseased (D). The four outcomes correspond to the
four outcomes of tests we saw in section ??: true positives are D&P, false positives are H&P,
true negatives are H&N and false negatives are D&N. This allows us to calculate the positive
predictive value, which is the probability that a positive result is correct. For the patient with

145

disease prevalence of 0.1, 𝑃𝑃𝑉 = 𝑇 𝑃/(𝑇 𝑃 + 𝐹𝑃) = 0.098/(0.098 + 0.045) ≈ 0.685. For the
patient with disease prevalence of 0.01, 𝑃𝑃𝑉 = 𝑇 𝑃/(𝑇 𝑃 +𝐹𝑃) = 0.0098/(0.0098+0.0495) ≈
0.165. The exact same test has a higher PPV for a patient who has a higher prior probability
of having a disease.

The negative predictive value can be calculated in a similar manner for the patient with disease
prevalence of 0.1: 𝑁𝑃 𝑉 = 𝑇 𝑁/(𝑇 𝑁 + 𝐹𝑁) = 0.855/(0.855 + 0.002) ≈ 0.998. For the patient
with disease prevalence of 0.01, 𝑁𝑃𝑉 = 𝑇 𝑁/(𝑇 𝑁 +𝐹𝑁) = 0.9405/(0.9405+0.0002) ≈ 0.9998.
The exact same test has a higher NPV for a patient who has a lower prior probability of having
a disease.

Figure 8.2: Probabilities of the four possible outcomes for patients with different disease preva-
lence using the same medical test with sensitivity (rate of true positives) of 0.98
and specificity (rate of true negatives) of 0.95: above for disease prevalence of 10%.

8.2.2 Exercises

The table below shows the results of using X-ray imaging as a diagnostic test for tuberculosis
in patients with known TB status. Use it to answer the questions below.

Test for TB TB absent TB present
Negative 1739 8
Positive 51 22

Use this table to calculate the sensitivity and specificity of the test. Suppose that you have
the knowledge that the prevalence of TB in a population is P(D) = 0.001, use the previously

146

Figure 8.3: Probabilities of the four possible outcomes for patients with different disease preva-
lence using the same medical test with sensitivity (rate of true positives) of 0.98
and specificity (rate of true negatives) of 0.95: above for disease prevalence of 1%

calculated sensitivity and specificity to answer the following questions about testing a patient
from the population (not those used in the study in the table.)

1. Using the law of total probability, calculate P(Pos), the probability that a randomly cho-
sen person from the population tests positive for the disease and P(Neg), the probability
that a randomly chosen person tests negative for the disease.

2. Using Bayes’ formula, find the probability that a patient who tested positive has the
disease P(D | Pos) and the probability that a patient who tested negative is healthy P(H
| Neg).

3. If the disease prevalence were P(D) =0.5, repeat the calculations to find the new P(D |
Pos) and P(H | Neg).

Dating apps allow us to look a person’s profile (or picture) and decide whether we’d like to
date them (swipe right) or not (swipe left). Let us treat this like a hypothesis test, with the
null hypothesis being that you don’t want to date them. Then the swipe right decision is a
positive result (rejecting the null) and the swipe left decision is a negative result (not rejecting
the null).

Suppose you think you’re pretty good at deciding who you want to date, and you think that
your sensitivity is 80% and your specificity is 66%.

4. If you go through the profiles of 200 people in a population where you expect 25% of
the population to be dateable, how many times can you expect to swipe right? Hint:

147

multiply the probability by the number of people to find out the expected number of
swipes.

5. If instead the population had only 5% dateable individuals, how many times can you
expect to swipe right?

6. Suppose you swipe right on a person from the 25% dateable population and go on a date.
What’s the probability that it’s a good one (this is a person you actually want to date)?

7. Suppose you swipe right on a person from the 5% dateable population and go on a date.
What’s the probability that it’s a good one (this is a person you actually want to date)?

8.3 Applications of Bayesian thinking

The essence of the Bayesian approach to statistics is that everything comes with a prior
probability, or odds, as Bayesians like to express it. There is usually some prior knowledge one
has to assess the odds that a hypothesis is true before doing an experiment, which is called the
prior. If you don’t explicitly assume the prior, then you’ve assumed it implicitly. For example,
the naive answer for the positive predictive value that ignores the prior prevalence for a test
with 99% specificity and sensitivity is that it is also 99%. This assumes that the patient has
equal prior probability of disease and health, as you can verify using Bayes’ formula. Even in
the absence of any data for a particular population, this is an unlikely assumption for most
diseases. So the Bayesian advice is: assign odds to everything to the best of your knowledge
so you don’t get played for a sucker. An excellent summary of the misuses of p-value and the
Bayesian approach to interpretation of medical data, see [?].

8.3.1 when too much testing is bad

For many decades, doctors recommended early cancer screening in a major public health effort
to help reduce the mortality rate from cancer. This makes sense because the prognosis is
generally much better for cancer when it is detected early, since the tumor is small and has
not yet metastasized. This approach has taken hold in the public imagination in the US,
and given us pink-ribbon campaigns aimed at breast cancer awareness and celebrities advising
everyone to get tested early and often.

More recently, large-scale studies have shown that that preventative screenings do not neces-
sarily improve the survival rate of cancer patients. One study from Canada [?] assigned almost
90,000 women randomly into two equal-size groups, by a randomization process illustrated in
figure ??. One of the groups received yearly mammography screenings for 5 years and one did
not. The women were between the ages of 40 and 59, and then study then tracked the partici-
pants for 25 years to see whether there was a difference in cancer mortality rates between the
two groups.

148

Figure 8.4: The study design for the large randomized screening trial of effectiveness of mam-
mography screening; figure from [?] used by permission

The results may be surprising: the mortality rates were very similar, and in fact, slightly more
women died of breast cancer in the mammography group than in the control group (180 vs 171).
At the same time, more cases of invasive breast cancers were diagnosed in the mammography
group, which may mean either that early treatment did not make a difference or that many of
those cases were false positives.

This may seem counterintuitive: isn’t more information, however imperfect, better? Viewed
from a Bayesian perspective, the results should be less than surprising. Since the prior proba-
bility of developing breast cancer in any given year is small, the positive predictive value of the
test is likely low, and most of the positive results end up being false positives. A false positive
result for breast cancer has a major negative impact on a person’s life: it means more invasive
testing, a lot of worrying, and sometimes unnecessary treatment with serious side effects. This
does not mean, of course, that cancer screening is never useful, and I am not trying to offer
medical advice. For patient populations with a higher prior probability such screening tests
may in fact provide a substantial benefit. But this once again underscores the importance of
taking into account prior knowledge.

Figure 8.5: Illustration of the different results of mammography screening on 10000 women

149

8.3.2 reliability of scientific studies

In 2005 John Ioannidis published a paper entitled “Why most published research findings are
wrong” [?]. The paper, as you can see by its title, was intended to be provocative, but it is
based solidly on the classic formula of Bayes. The motivation for the paper came from the
observation that too often in modern science, big, splashy studies that were published could
not be reproduced or verified by other researchers. What could be behind this epidemic of
questionable scientific work?

Figure 8.6: The dependence of post-study probability (positive predictive value) on the pre-
study odds, for different power of the study, and with different levels of bias; (figure
from [?])

The problem as described by Ioannidis and many others, in a nutshell, is that unthinking
use of traditional hypothesis testing leads to a high probability of false positive results being
published. The paper outlines several ways in which this can occur.

First, there is the problem of prior knowledge. Too often, a hypothesis is tested and if the
resultant p-value is less than some arbitrary threshold (very often 0.05, an absurdly high
number), then the results are published. However, if one is testing a hypothesis with low
prior probability, a positive hypothesis test result is very likely a false positive. Very often,
modern biomedical research involves digging through a large amount of information, like an
entire human genome, in search for associations between different genes and a phenotype, like
a disease. It is a priori unlikely that any specific gene is linked to a given phenotype, because
most genes have very specific functions, and are expressed quite selectively, only at specific
times or in specific types of cells. However, publishing such studies results in splashy headlines
(’ ’Scientists find a gene linked to autism!“) and so a lot of false positive results are reported,
only to be refuted later, in much less publicized studies.

The second problem compounds the first one: multiple research groups studying the same
phenomenon. This should be a good thing, but it can lead to a higher volume of false positive
results. Suppose that 20 groups are all testing the same hypothesis, and are using the same p-
value cutoff of 0.05 to decide whether their results is “significant”. Even if their null hypothesis

150

is true, and there is no effect, 1 out 20 groups is likely to obtain a p-value less than 0.05, simply
by random variation. What do you think that group will do? Yes, they should compare its
results with the other groups, or try to repeat the experiment multiple times. But repeating
experiments is costly and boring, and telling your competitors about your results can lead to
your getting scooped. Better publish fast!

The third problem is even more insidious: bias in the experimental work, either conscious
or non. Some of it may be due to experimental design, like biased sampling, or defective
instrumentation - no experiment is perfect. One big violation of good experimental design is
known as p-value fishing: repeating the experiment, or increasing the sample size, until the
p-value is below the desired threshold, and then stopping the experiment. Using such defective
design dramatically lowers the likelihood that the result is a true positive. And of course there
is actual fraud, or fudging of data, which contributes to some bogus results.

Ioannidis performed basic calculations of the probability that a published study is true (that
is, that a positive reported result is a true positive), and how it is affected by pre-study (prior)
probability, number of conducted studies on the same hypothesis, and the level of bias. His
prediction is that for fairly typical scenario (e.g. pre-study probability of 10%, ten groups
working simultaneously, and a reasonable amount of bias) the probability that a published
result is correct is less than 50%. This effect is shown in figure ??, taken from his paper.
He then followed up with another paper [?] that investigated 49 top-cited medical research
publications over a decade, and looked at whether follow-up studies could replicate the results,
and found that a very significant fraction of their findings could not be replicated by subsequent
investigations.

This might leave you with a rather bleak view of scientific research. Indeed, many in the
community have been sounding the alarm about the lack of replicability of published results,
and have proposed some basic remedies. Perhaps the most important is the issue that only
positive results are deemed worthy of publication. If all of the 20 groups in the scenario above
published their results, 19 would report no effect, and 1 would report an effect, and the picture
would be clear. There are some journals (e.g. PLOS One) which accept any methodologically
sound submission, regardless of whether the result is positive or negative. Another remedy is
to provide funding for research labs to repeat other groups’ studies to test them. These steps
are being implemented, and hopefully will eventually lead to an improvement in the reliability
of published data. Even more importantly, educating scientists about basic probability ideas,
such as Bayes’ formula and the notion of prior knowledge, should improve the quality of
inference and decrease the amount of questionable science.

8.3.3 discussion questions

The following questions refer to the paper “Why most published research findings are wrong”
[?].

151

1. What are some of the examples of studies with low prior odds that Ioannidis uses as
examples?

2. Due to human imperfection, there will always be some bias in conducting and reporting
scientific results. What do you expect to be the typical level of bias (u in the paper)?

3. What does Ioannidis propose to remedy the problem of lack of reproducibility of studies?
Will you take them into account when reading scientific publications or doing your own
research?

152

Tutorial 7: Functions and sampling from data

Objectives:

• define functions in R
• call functions and assign their output
• use replicate to call functions repeatedly
• random sampling of observations from data frames

Functions in R

Function

A function is a piece of code that is defined separately and can be called by other pieces
of code. The main purpose is to create a “black box” that does a specific job and can be
used repeatedly just by calling the function (invoking its name), rather than copying the
code repeatedly.

A function generally has input variables (although sometimes there are none) and returns an
output, either by using the return() statement or by using the value on the last line of the
body of the function. It is important to distinguish between the inside of the function - the
code between the curly braces in the function definition - and the outside, that is everything
else. The inputs are passed to the function in the call (through the parentheses) and then used
inside the function to do its business and produce an output, which is then returned back to
the place in the code where the function was called.

defining a function

Here is an example of a function definition, with input variables N and r. Between the curly
braces is the body of the function, which in this case multiplies the two input variables and
then returns them.

my_funk <- function(N,r){
ans <- r*N # multiply the numbers

153

return(ans)
}

Note that after running the code chunk above, you should see the name my_funk in your
environment (under Functions). This means this function is defined in memory and ready to
be called.

calling a function

After a function is defined, it is ready to be called (executed) by invoking its name and giving
the correct number of inputs. Here’s an example of a function call:

a <- 30
y <- 1:10
print(my_funk(y, a))

Notice that the variable names in the function call do not have to be same as what they are
called within the function. IMPORTANT: a function uses the order of variables in the function
call, called external variables (y, a) to assign their names within the function, called internal
variables (N, r). (There is a way to specify which input belongs to which internal variable,
e.g. plot(x=time, y=sol) so if you do this the order is not important.)

using a function to generate random numbers

Let’s do something a bit more interesting than multiplying numbers! Here is a function that
generates 2 uniform random numbers between 1 and n (where n is an input) and returns their
sum.

dice <- function(n){
d1 <- sample(1:n, 1) # uniform integer between 1 and n
d2 <- sample(1:n, 1) # uniform integer between 1 and n
return(d1+d2)

}

If we call this function with n of 6, this will return a roll of two standard six-sided dice, like
this:

n<-6
roll <- dice(n)
print(roll)

154

using replicate

Sometimes it can be useful to call a function many times, without copying and pasting the call.
This can be accomplished very nicely using a “wrapper” function replicate. The function
has two main inputs: the first is the number of times to repeat the function call, with the
function call in the second place. For a example, here is a simulation of one hundred rolls of
two dice:

sides <- 6 # sides of the die
num <- 100 # number of repeats
rolls <- replicate(num, dice(sides))
print(rolls)

The result is assigned to a vector array rolls, which contains 100 values. Long arrays of
results can be difficult to describe by inspection, so one important use of logical tests that
were introduced in Tutorial 6 is to count the number of values in an array that satisfy some
condition. For example, the code chunks below print out the number of rolls that are equal to
7, and the number of rolls that are greater than 10:

print(paste("Number of 7s:", sum(rolls == 7)))
print(paste("Number of rolls above 10:", sum(rolls>10)))

Exercises

1. Call the function dice with input argument 6 (as above), using function replicate 100
times, and assign the output to variable rolls. Use a logical test to count how many of
those 100 dice rolls are “snake eyes” (2) and print out the number.

Hint

Assign the value 6 to n first; call replicate() with 100 as the first input and assign the
output; use sum() and the logical test == 2 with the output vector

2. Modify the function dice so instead of returning the sum of two dice rolls it returns
TRUE if both numbers are the same and FALSE otherwise, and call it double.

155

Hint

Copy the definition of function dice from above, change its name to double, replace the
+ in the return() statement with ==

3. Use replicate to call the function double you defined above 1000 times, assign it
variables doubles and print how many doubles it produces.

Hint

Copy the code from exercise 1 above, change the last line to sum up the result vector.

Selecting samples from data frames

data frames are matrix arrays

Data frames, which were introduced in Tutorial 3, are two-dimensional arrays, which means
that they require two indices to specify an entry: one for the row number and one for the
column number. For example, the penguins data set from palmerpenguins package has 344
rows and 8 columns:

head(penguins)
print(paste("Number of rows in penguins:", nrow(penguins)))
print(paste("Number of columns in penguins:", ncol(penguins)))

The columns in data frames represent the variables that were measured, while the rows rep-
resent individual observations. A specific column in the penguins data set, e.g. column 3,
contains the observations of bill length for every penguin, a specific row, e.g. row 100, contains
all the variables (species, island, bill length, etc.) measures for penguin index 100 (unfortu-
nately anonymous). You can use a row index and column index to specify an observation of a
specific variable, for example, below is the code to print out the value of the 100th observation
of the 3rd variable:

print(paste("The 100th observation of the 3rd variable:", penguins[100,3]))

156

selecting some observations

One can choose to select a subset of observations from a data frame by specifying a subset of
row indices. This code snippet prints out the values of all the variables for 100th to the 105th
penguins; note that the column index is left blank:

print(penguins[100:105,])

Indices can also be selected by using a logical test, which is particularly useful for selecting
observations that match a particular criterion. For example, we can select all the penguins
observed on the island of Biscoe by using the test penguins$island == 'Biscoe' in place of
the index, as in the following script and calculated the summary of all the variables for this
selection:

summary(penguins[penguins$island == 'Biscoe',])

Note that this code looks pretty clunky, so I highly recommend using the tidyverse collection
of packages, which offers superior tools for selecting and filtering subsets of data frames.

random sampling of observations

If you have a large collection of data, sometimes you may want to randomly sample observations
from the data frame, for example to assess the robustness of your statistical methods, which
is an approach called bootstrapping. To do this, you can generate a random sample of integers
using the function sample(), and then use these numbers as row indices in the data frame:

sam_size <- 100 # number of observations
row_indices <- sample(nrow(penguins), size = sam_size, replace = FALSE)
data_sample <- penguins[row_indices,]
summary(data_sample)

Notice that we used the option replace = FALSE above, to avoid generating a sample with
multiple copies of an observation. Sometimes, bootstrap methods are used to generate samples
with multiple copies allowed, in which case you set replace = TRUE option:

sam_size <- 100 # number of observations
row_indices <- sample(nrow(penguins), size = sam_size, replace = TRUE)
data_sample <- penguins[row_indices,]
summary(data_sample)

157

9 Linear difference equations

We’re captive on the carousel of time
We can’t return we can only look behind
From where we came
And go round and round and round
In the circle game
– Joni Mitchell, The Circle Game

All living things change over time, and this evolution can be quantitatively measured and
analyzed. Mathematics makes use of equations to define models that change with time, known
as dynamical systems. In this unit we will learn how to construct models that describe the
time-dependent behavior of some measurable quantity in life sciences. Numerous fields of
biology use such models, and in particular we will consider changes in population size, the
progress of biochemical reactions, the spread of infectious disease, and the spikes of membrane
potentials in neurons, as some of the main examples of biological dynamical systems.

Many processes in living things happen regularly, repeating with a fairly constant time period.
One common example is the reproductive cycle in species that reproduce periodically, whether
once a year, or once an hour, like certain bacteria that divide at a relatively constant rate
under favorable conditions. Other periodic phenomena include circadian (daily) cycles in
physiology, contractions of the heart muscle, and waves of neural activity. For these processes,
theoretical biologists use models with discrete time, in which the time variable is restricted
to the integers. For instance, it is natural to count the generations in whole numbers when
modeling population growth.

This chapter will be devoted to analyzing dynamical systems in which time is measured in
discrete steps. In this chapter you will learn to do the following:

• write down discrete-time (difference) equations based on stated assumptions

• find analytic solutions of linear difference equations

• use for loops in R

• compute numeric solutions of difference equations

158

9.1 Discrete time population models

Let us construct our first models of biological systems. We will start by considering a popu-
lation of some species, with the goal of tracking its growth or decay over time. The variable
of interest is the number of individuals in the population, which we will call 𝑁 . This is called
the dependent variable, since its value changes depending on time; it would make no sense to
say that time changes depending on the population size. Throughout the study of dynamical
systems, we will denote the independent variable of time by 𝑡. To denote the population size
at time 𝑡, we can write 𝑁(𝑡) but sometimes use 𝑁𝑡.

9.1.1 static population

In order to describe the dynamics, we need to write down a rule for how the population changes.
Consider the simplest case, in which the population stays the same for all time. (Maybe it is
a pile of rocks?) Then the following equation describes this situation:

𝑁(𝑡 + 1) = 𝑁(𝑡)
This equation mandates that the population at the next time step be the same as at the
present time 𝑡. This type of equation is generally called a difference equation, because it can
be written as a difference between the values at the two different times:

𝑁(𝑡 + 1) − 𝑁(𝑡) = 0
This version of the model illustrates that a difference equation at its core describes the incre-
ments of 𝑁 from one time step to the next. In this case, the increments are always 0, which
makes it plain that the population does not change from one time step to the next.

9.1.2 exponential population growth

Let us consider a more interesting situation: as a colony of dividing bacteria, such as E. coli,
shown in figure ??. We will assume that each bacterial cell divides and produces two daughter
cells at fixed intervals of time, and let us further suppose that bacteria never die. Essentially,
we are assuming a population of immortal bacteria with clocks. This means that after each
cell division the population size doubles. As before, we denote the number of cells in each
generation by 𝑁(𝑡), and obtain the equation describing each successive generation:

𝑁(𝑡 + 1) = 2𝑁(𝑡)
It can also be written in the difference form, as above:

𝑁(𝑡 + 1) − 𝑁(𝑡) = 𝑁(𝑡)
The increment in population size is determined by the current population size, so the popu-
lation in this model is forever growing. This type of behavior is termed exponential growth,
which we will investigate further in section 9.2.

159

Figure 9.1: Scanning electron micrograph of a dividing Escherichia coli bacteria; image by
Evangeline Sowers, Janice Haney Carr (CDC) in public domain via Wikimedia
Commons.

160

9.1.3 population with births and deaths

Suppose that a type of fish lives to reproduce only once after a period of maturation, after
which the adults die. In this simple scenario, half of the population is female, a female always
lays 1000 eggs, and of those, 1% survive to maturity and reproduce. Let us set up the model
for the population growth of this idealized fish population. The general idea, as before, is to
relate the population size at the next time step 𝑁(𝑡 + 1) to the population at the present time
𝑁(𝑡).
Let us tabulate both the increases and the decreases in the population size. We have 𝑁(𝑡)
fish at the present time, but we know they all die after reproducing, so there is a decrease of
𝑁(𝑡) in the population. Since half of the population is female, the number of new offspring
produced by 𝑁(𝑡) fish is 500𝑁(𝑡). Of those, only 1% survive to maturity (the next time step),
and the other 99% (495𝑁(𝑡)) die. We can add all the terms together to obtain the following
difference equation:

𝑁(𝑡 + 1) = 𝑁(𝑡) − 𝑁(𝑡) + 500𝑁(𝑡) − 495𝑁(𝑡) = 5𝑁(𝑡)

The number 500 in the expression is the birth rate of the population per individual, and the
negative terms add up to the death rate of 496 per individual. We can re-write the equation
in difference form:

𝑁(𝑡 + 1) − 𝑁(𝑡) = 4𝑁(𝑡)

This expression again generates growth in the population, because the birth rate outweighs
the death rate. [?]

9.1.4 dimensions of birth and death rates

As we discussed in section ?? the dimensions of quantities in a model have to satisfy the rules
of dimensional analysis we discussed in chapter 2. In the case of population models, the birth
and death rates measure the number of individuals that are born (or die) within a reproductive
cycle for every individual at the present time. Their dimensions must be such that the terms
in the equation all match:

[𝑁(𝑡 + 1) − 𝑁(𝑡)] = [𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛] = [𝑟][𝑁(𝑡)] = [𝑟] × [𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛]

This implies that 𝑟 is algebraically dimensionless. However, the meaning of 𝑟 is the rate of
change of population over one (generation) time step. 𝑟 is the birth or death rate of the
population per generation, and therefore, when such rates are measured, they are reported
with units of inverse time (e.g. number of offspring per year).

161

9.1.5 linear demographic models

We will now write a general difference equation for any population with constant birth and
death rates. This will allow us to substitute arbitrary values of the birth and death rates to
model different biological situations. Suppose that a population has the birth rate of 𝑏 per
individual, and the death rate 𝑑 per individual. Then the general model of the population size
is:

𝑁(𝑡 + 1) = (1 + 𝑏 − 𝑑)𝑁(𝑡) (9.1)

The general equation also allows us to check the dimensions of birth and death rates, especially
as written in the incremental form: $ N(t+1) - N(t) = (b - d)N(t)$. The change in population
rate over one reproductive cycle is given by the current population size multiplied by the
difference of birth and death rates, which as we saw are algebraically dimensionless. The right
hand side of the equation has the dimensions of population size, matching the difference on
the left hand side. [?]

9.2 Solutions of linear difference models

9.2.1 simple linear models

Having set up the difference equation models, we would naturally like to solve them to find
out how the dependent variable, such as population size, varies over time. A solution may
be analytic, meaning that it can be written as a formula, or numerical, in which case it is
generated by a computer in the form of a sequence of values of the dependent variable over a
period of time. In this section, we will find some simple analytic solutions and learn to analyze
the behavior of difference equations which we cannot solve exactly.

Definition

A function 𝑁(𝑡) is a solution (over some time period 𝑎 < 𝑡 < 𝑏) of a difference equation
𝑁(𝑡 + 1) = 𝑓(𝑁(𝑡)) if it satisfies that equation (over some time period 𝑎 < 𝑡 < 𝑏).

For instance, let us take our first model of the static population, 𝑁(𝑡 + 1) = 𝑁(𝑡). Any
constant function is a solution, for example, 𝑁(𝑡) = 0, or 𝑁(𝑡) = 10. There are actually as
many solutions as there are numbers, that is, infinitely many! In order to specify exactly what
happens in the model, we need to specify the size of the population at some point, usually, at
the “beginning of time”, 𝑡 = 0. This is called the initial condition for the model, and for a
well-behaved difference equation it is enough to determine a unique solution. For the static
model, specifying the initial condition is the same as specifying the population size for all
time.

162

Now let us look at the general model of population growth with constant birth and death rates.
We saw in equation 9.1 above that these can be written in the form 𝑁(𝑡+1) = (1+𝑏 −𝑑)𝑁(𝑡).
To simplify, let us combine the numbers into one growth parameter 𝑟 = 1 + 𝑏 − 𝑑, and write
down the general equation for population growth with constant growth rate:

𝑁(𝑡 + 1) = 𝑟𝑁(𝑡)

To find the solution, consider a specific example, where we start with the initial population
size 𝑁0 = 1, and the growth rate 𝑟 = 2. The sequence of population sizes is: 1, 2, 4, 8, 16, etc.
This is described by the formula 𝑁(𝑡) = 2𝑡.

In the general case, each time step the solution is multiplied by 𝑟, so the solution has the same
exponential form. The initial condition 𝑁0 is a multiplicative constant in the solution, and
one can verify that when 𝑡 = 0, the solution matches the initial value:

𝑁(𝑡) = 𝑟𝑡𝑁0 (9.2)

I would like the reader to pause and consider this remarkable formula. No matter what the
birth and death parameters are selected, this solution predicts the population size at any point
in time 𝑡.
In order to verify that the formula for 𝑁(𝑡) is actually a solution in the meaning of definition
9.2.1, we need to check that it actually satisfies the difference equation for all 𝑡, not just a few
time steps. This can be done algebraically by plugging in 𝑁(𝑡 + 1) into the left side of the
dynamic model and 𝑁(𝑡) into the right side and checking whether they match. For 𝑁(𝑡) given
by equation 9.2, 𝑁(𝑡 + 1) = 𝑟𝑡+1𝑁0, and thus the dynamic model becomes:

𝑟𝑡+1𝑁0 = 𝑟 × 𝑟𝑡𝑁0

Since the two sides match, this means the solution is correct.

9.2.2 models with a constant term

Now let us consider a dynamic model that combines two different rates: a proportional rate
(𝑟𝑁) and a constant rate which does not depend on the value of the variable 𝑁 . We can write
such a generic model as follows:

𝑁(𝑡 + 1) = 𝑟𝑁(𝑡) + 𝑎

The right-hand-side of this equation is a linear function of 𝑁 , so this is a linear difference
equation with a constant term. What function 𝑁(𝑡) satisfies it? One can quickly check that
that the same solution 𝑁(𝑡) = 𝑟𝑡𝑁0 does not work because of the pesky constant term 𝑎:

𝑟𝑡+1𝑁0 ≠ 𝑟 × 𝑟𝑡𝑁0 + 𝑎

163

To solve it, we need to try a different form: specifically, an exponential with an added constant.
The exponential can be reasonably surmised to have base 𝑟 as before, and then leave the two
constants as unknown: 𝑁(𝑡) = 𝑐1𝑟𝑡 + 𝑐2. To figure out whether this is a solution, plug it into
the linear difference equation above and check whether a choice of constants can make the two
sides agree:

𝑁(𝑡 + 1) = 𝑐1𝑟𝑡+1 + 𝑐2 = 𝑟𝑁(𝑡) + 𝑎 = 𝑟𝑐1𝑟𝑡 + 𝑟𝑐2 + 𝑎
This equation has the same term 𝑐1𝑟𝑡+1 on both sides, so they can be subtracted out. The
remaining equation involves only 𝑐2, and its solution is 𝑐2 = 𝑎/(1 − 𝑟). Therefore, the general
solution of this linear difference equation is the following expression, which is determined from
the initial value by plugging 𝑡 = 0 and solving for 𝑐.

𝑁(𝑡) = 𝑐𝑟𝑡 + 𝑎
1 − 𝑟 (9.3)

Example. Take the difference equation 𝑁(𝑡+1) = 0.5𝑁(𝑡)+40 with initial value 𝑁(0) = 100.
The solution, according to our formula is 𝑁(𝑡) = 𝑐0.5𝑡 +80. At 𝑁(0) = 100 = 𝑐+80, so 𝑐 = 20.
Then the compete solution is 𝑁(𝑡) = 20 × 0.5𝑡 + 80. To check that this actually works, plug
this solution back into the difference equation:

𝑁(𝑡 + 1) = 20 × 0.5𝑡+1 + 80 = 0.5 × (20 × 0.5𝑡 + 80) + 40 = 20 × 0.5𝑡+1 + 80

The equation is satisfied and therefore the solution is correct.

9.2.3 population growth and decline

The parameter 𝑟 can assume different values, depending on the birth and death rates. If the
birth rate is greater than the death rate, 𝑟 > 1, and if it is the other way around, 𝑟 < 1. Note
that for a realistic biological population, the death rate is limited by the number of individuals
present in the population. The maximum number of individuals at any time is 𝑁(𝑡) + 𝑏𝑁(𝑡),
so this means that 𝑑 ≤ 𝑏 + 1. Therefore, for a biological population, 𝑟 ≥ 0.

x <- 0:6
y0 <- 5
plot(x,y0*2^x,t='b',lwd=3, cex.axis=1.5,cex.lab=1.5, xlab='time', ylab='population')
y0<- 1
lines(x,y0*2^x ,t='b',lwd=3, col=2)
leg.txt <- c("N(0)=5","N(0)=1")
legend("topleft", leg.txt, cex=1.5, col=c(1,2), pch=1, lty=1, lwd=3)
y0 <- 1000
plot(x,y0*0.5^x,t='b',lwd=3, cex.axis=1.5,cex.lab=1.5, xlab='time', ylab='population')
y0<- 500
lines(x,y0*0.5^x,t='b',lwd=3,col=2)

164

leg.txt <- c("N(0)=1000","N(0)=500")
legend("topright", leg.txt, cex=1.5, col=c(1,2), pch=1, lty=1, lwd=3)

0 1 2 3 4 5 6
0

10
0

25
0

time

po
pu

la
tio

n

N(0)=5
N(0)=1

Figure 9.2: Plots of solutions of linear difference equations: a) 𝑁(𝑡 + 1) = 2𝑁(𝑡) with different
initial values; b) 𝑁(𝑡 + 1) = 0.5𝑁(𝑡) with different initial values

0 1 2 3 4 5 6

0
40

0
80

0

time

po
pu

la
tio

n

N(0)=1000
N(0)=500

Figure 9.3: Plots of solutions of linear difference equations: a) 𝑁(𝑡 + 1) = 2𝑁(𝑡) with different
initial values; b) 𝑁(𝑡 + 1) = 0.5𝑁(𝑡) with different initial values

The solutions in formula 9.2 and 9.3 are exponential functions, which as we saw in section 2.2
have a limited menu of behaviors, depending on the value of 𝑟. If 𝑟 > 1, multiplication by 𝑟
increases the size of the population, so the solution 𝑁(𝑡) will grow. If 𝑟 < 1, multiplication by
𝑟 decreases the size of the population, so the solution 𝑁(𝑡) will decay (see figure ??). Finally,
if 𝑟 = 1, multiplication by 𝑟 leaves the population size unchanged, like in the pile of rocks
model. Here is the complete classification of the behavior of population models with constant
birth and death rates (assuming 𝑟 > 0):

• 𝑟 > 1: 𝑁(𝑡) grows without bound
• 𝑟 < 1: 𝑁(𝑡) decays to the constant 𝑎/(1 − 𝑟)
• 𝑟 = 1: 𝑁(𝑡) remains constant

165

As we see, there are only two options for solution of linear difference equations: ever-faster
growth or decay to zero or another constant value. The exponential growth of populations
is also known as Malthusian after the early population modeler Thomas Malthus. He used
a simple population model with constant growth rate to predict demographic disaster due to
the exponentially increasing population outstripping the growth in food production. In fact,
human population has not been growing with a constant birth rate, and food production has
(so far) kept up pace with population size, illustrating yet again that mathematical models are
only as good as the assumptions that underlie them.

9.2.4 Exercises

For the following scenarios for a population: 1) Construct a dynamic model by writing down a
difference equation both in the updating function form (𝑁(𝑡+1) = 𝑓(𝑁(𝑡))) and the increment
form (𝑁(𝑡 + 1) − 𝑁(𝑡) = 𝑔(𝑁(𝑡))) and specify the time step; 2) find the solution of the linear
difference equation with a generic initial value and check that it satisfies the difference equation
by plugging the solution into your equation (in either form); 3) plug in the given initial value
and predict the future.

1. Zombies have appeared in Chicago. Every day, each zombie produces 3 new zombies.
Suppose that initially there is only one zombie, how many zombies will there be in 7
days?

2. Suppose hunters kill 50 deer in a national forest every hunting season, while the deer by
themselves have equal birth and death rates. If there are initially 500 deer in the forest,
predict how many there will be in 5 years.

3. The number of infected people in a population grows by 8% per day and those who
become infected remain infected. If initially there are 8 infected, how many individuals
will be infected in 45 days?

4. Suppose bacteria in a population divide in 2 every hour and 90% of the current population
dies after reproduction, not including the new offspring. If the population initially has
10 million bacteria, predict how many there will be in 12 hours.

5. In a rabbit population, each pair produces 1.2 offspring every year (i.e. 0.6 per capita)
and the adults have a 0.5 annual death rate after reproduction (and assume the whole
population is paired up into mating pairs.) If initially there are 100 rabbits, predict how
many there will be in 5 years.

6. Consider the same rabbit population, but now a python that lives nearby eats exactly 1
rabbit a month. If initially there are 100 rabbits, how many do you predict will be in 10
years?

166

7. 10 fish are added to an aquarium every month, while 80% of those present survive every
month and there is no reproduction. If initially there are 10 fish in the aquarium, predict
how many there will be in 2 years.

8. A gene has length of 10000 nucleotides, some of them are ancestral (A) and others are
mutant letters (M). Every generation 3% of the ancestral letters turn mutate and become
M and 1% of the mutant letters revert to the ancestral state. Write a discrete time model
for the number of the mutant nucleotides M (Hint: 𝐴 = 10000 − 𝑀). If initially there
are 0 mutant letters (all 10000 are ancestral), predict how many there will be in 10
generations.

9. Twenty flies fly into a house every day, and half of the flies in the house at beginning of
each day find their way out (no births or deaths happen in the house.) If there are 10
files in the house initially, how many will there be in 12 days?

10. Suppose a branch grows at 10 cm a month (year round, assume it’s a climate with no
seasonal variations), and that every month a gardener trims 25% of the length of the
branch. If initially the branch is 10 cm long, what will be its length in 6 months?

167

Tutorial 8: For loops and dynamic models

Objectives:

• Define for loops
• Assign vector elements inside a for loop
• Use for loops for iteratively solving a dynamic model

For loops and vectors

components of for loops

A for loop is a programming structure that repeats some code (called the body) a specified
number of time. For example, you can write “Hello!” ten times like this:

for (i in 1:10) {
print("Hello!")

}

The for loop starts with the keyword for, then has the expression in parentheses (i in 1:10). i
is called the loop variable, in is another keyword, and 1:10 is a loop vector. After the first line
there is a curly bracket { and everything that follows until the closing bracket } is the loop
body. The loop body is executed as many times as there are elements in the loop vector (in
this example, 10 times) and the only thing that changes is the values of the loop variable i,
which starts with the first element of the vector (1) and goes until it reaches the last element
(10) and then stops:

for (i in 1:10) {
print(paste("Iteration number", i))

}

It can be used to do repetitive calculations, for example, adding up all the integers in an array
(of course the built-in function sum() will do it too):

168

add up the integers from 1 to 10 and print out the total
total<-0
for (i in 1:10) {
total<-total+i

}
print(total)

using vectors with loops

It is especially useful to use loops to assign vector variables one element at a time. The loop
variable (i) is usually used for indexing the vector variable. There are several necessary features
of using vectors in for loops, so let us take an example script and break them down in this
example of calculating a vector of the sum of integers from 1 up to the current number:

1) Pre-allocate the vector variable - i.e. create a vector of the correct length prior to the
loop by filling it with a placeholder value, e.g. 0 or NA (not a value).

max <- 10
total_vec <- rep(0, max+1) # pre-allocate the vector

2) Only put in the loop what has to be repeated (e.g. don’t put the pre-allocation inside
the loop);

for (i in 1:max) { # iterate for i from 1 to max
total_vec[i+1] <- total_vec[i] + i # assign to the next value of total_vec the sum of i and the current value of total_vec

}

3) Be careful with indexing inside for loops - this means paying careful attention to the
lowest and the highest index that you’re using inside the loop. For example, if your loop
vector goes from 1 to max (as above), the total number of elements in your vector will
be max+1, because we assigned the element with index i+1 in the loop:

print(length(total_vec)) # print the number of elements of total_vec
print(total_vec)

using for loops for solving discrete-time dynamic models

A first-order discrete time model of a variable 𝑋(𝑡) can be defined by an equation where the
next value of the variable 𝑋(𝑡 + 1) is computed from the current value 𝑋(𝑡). For example the
model

169

𝑋(𝑡 + 1) = 1.5𝑋(𝑡)

describes a variable that is multiplied by 1.5 every time step. A for loop can be used to
iteratively compute its solution, starting with a given initial value 𝑋(0). The script below
starts with the initial value 4, computes the solution for 10 steps and plots it (note that the
time vector starts at 0 and goes through 10, while the index of the variable X goes from 1 to
11).

num <- 10
X <- rep(4, num + 1) # pre-allocate the solution vector with initial value
for (i in 1:num) {
X[i+1] <- 1.5*X[i] # compute the next value X[i+1] from the current value X[i]

}
time <- 0:num
plot(time, X)

In the famous Fibonacci model the next value is defined to be the sum of two previous values
in the sequence:

𝐹(𝑡 + 2) = 𝐹(𝑡 + 1) + 𝐹(𝑡)
The script below iteratively calculates the solution, starting with initial values of 𝐹(0) =
𝐹(1) = 1 and plots the resulting sequence together with an exponential function that approx-
imates it.

num_steps <- 20 # number of steps
fib <- rep(1, num_steps + 2) # pre-allocate vector with correct number of elements with all 1s
for (i in 1:num_steps) {
fib[i+2] <- fib[i+1] + fib[i] # add elements i and i+1 and assign it to element i+2

}
time <- 0:(num_steps+1) # define a "time" vector as the independent variable
plot (time, fib, lwd = 3, xlab = 'time steps', ylab = "Fibonacci")
an exponential function wiht the Golden ratio base
phi <- (1+sqrt(5))/2 # golden ratio
sol <- 0.75*phi^time # calculate the exponential function vector (no loop required)
lines(time, sol, col='red', lwd = 3) # overlay the exponential function plot
legend("topleft", # legend placement

c("Fibonacci", "exponential"), # vector containing labels for the legend
col=1:2, # vector containing color codes (1 is black, 2 is red)
lty=c(0,1), # vector specifying line types (0 is none, 1 is regular line)
pch=c(1,NA), # vector specifying types of point markers (1 is cicle, NA is none)

170

lwd=3)

Exercises:

1. Assign the value 5 to a variable named mine, then multiply it by 1.03, replacing the old
value of the variable.

mine <- 5
mine*1.03

Hint

in the last line, use mine on both sides of the assignment

2. Write a script to take the variable mine with values 5 and multiply it by 1.03 one hundred
times using a for loop. Use print() to show the result.

mine <- 5

Hint

use the for loop structure as defined in the tutorial above place the line of code you wrote
in exercise 1 inside the for loop

3. Use rep() to preallocate a vector of values mine to be 101 zeros, then assign the first
element to 5. Use a for loop to calculate 100 new values by multiplying the previous one
by 1.03 and assigning them to sequential elements of the vector, then plot that vector as
a function of the vector time.

time <- 0:100
mine <- rep(0,101)

Hint

assign 5 to mine[1] use the for loop structure from exercise 2 use index i to indicated the
current element of mine: mine[i]

4. Fix the indexing error in the script below for calculating a vector of factorials fact. Each
element of the vector fact[i] should be equal to 𝑖! = 1 × 2 × 3... × 𝑖, so for example
fact[2] should be 2 and fact[3] should be 6.

171

num <- 10
fact <- rep(1,num)
for (i in 1:num) {
fact[i+1]<-fact[i]*i

}
print(fact)

Hint

check what each element is multiplied by

172

10 Graphical analysis of ordinary differential
equations

I find the great thing in this world is not so much where we stand, as in what
direction we are moving.
– Oliver Wendell Holmes, Sr., The Autocrat of the Breakfast Table

In the last chapter we considered discrete time models, in which time is counted in integers.
This worked well to describe processes that happen in periodic cycles, like cell division or heart
pumping. Many biological systems do not work this way. Change can happen continuously,
that is, at any moment in time. For instance, the concentration of a biological molecule in the
cell changes gradually, as does the voltage across the cell membrane in a neuron.

The models for continuously changing variables require their own set of mathematical tools.
Instead of difference equations, we are going to see our first differential equations, which use
derivatives to describe how a variable changes with time. There is a tremendous amount
of knowledge accumulated by mathematicians, physicists and engineers for analyzing and
solving differential equations. There are many classes of differential equations for which it is
possible to find analytic solutions, often in the form of so-called special functions. Differential
equations courses for physicists and engineers are typically focused on learning about the
variety of existing tools for solving a few types of differential equations. For the purposes
of biological modeling, knowing how to solve a limited number of differential equations is of
limited usefulness. We will instead focus on learning how to analyze the behavior of differential
equations in general, without having to solve them on paper.

In this chapter you will learn to do the following:

• build differential equations based on stated assumptions

• find equilibrium values of an ODE

• analyze the stability of equilibria based on the graph of the defining function

• write down stability conditions analytically

• use graphical techniques to predict the behavior of the solution of a differential equation
without solving it

• understand basic compartment epidemiology models

173

10.1 Building differential equations

10.1.1 from discrete time to continuous

In this chapter we investigate continuous time dynamical systems, for which it does not make
sense to break time up into equal intervals. Instead of equations describing the increments
in the dependent variable from one time step to the next, we will see equations with the
instantaneous rate of the change (derivative) of the variable. Let us see the connection between
the discrete and continuous dynamic models by reducing the step size of the bacteria-division
population model.

First, suppose that instead of dividing every hour, the population of bacteria divide every
half-hour, but only half of the population does. That half is chosen randomly, so we don’t
have to keep track of whether each bacterium divided the last time around or not. Therefore,
each half-hour exactly half of the population is added to the current population:

𝑁(𝑡 + 0.5) = 𝑁(𝑡) + 0.5𝑁(𝑡) = 1.5𝑁(𝑡)

The solution for this model can be figured out from the linear difference equation solution we
derived in section 9.2 Every half-hour, the population is multiplied by 1.5, so we can write:

𝑁(𝑡) = 1.52𝑡𝑁(0) = (1.52)𝑡𝑁(0)

Compare this solution with the one for the every-hour model, 𝑁(𝑡) = 2𝑡𝑁(0) by plugging in a
few numbers for 𝑡. The half-hour model grows faster, because it has the base of 2.25 instead
of 2.

Now, suppose that the bacteria can divide four times an hour, but only a quarter of the
population reproduces at any given time. The model can be written similarly:

𝑁(𝑡 + 0.25) = 𝑁(𝑡) + 0.25𝑁(𝑡) = 1.25𝑁(𝑡)

The solution for this model is once again exponential, with the difference that each half contains
4 division events:

𝑁(𝑡) = 1.254𝑡𝑁(0) = (1.254)𝑡𝑁(0)
This solution has the exponential base is 1.254, which is larger than 1.52. So what happens
when we take this further?

Suppose the bacteria divide 𝑚 times an hour, with time step 1/𝑚. Then extending our models
above, we can write down the model and the solution:

𝑁(𝑡 + 1/𝑚) = 𝑁(𝑡) + 1/𝑚𝑁(𝑡) = (1 + 1/𝑚)𝑁(𝑡)

𝑁(𝑡) = (1 + 1/𝑚)𝑚𝑡𝑁(0) = [(1 + 1/𝑚)𝑚]𝑡𝑁(0)

174

Now we can do what mathematicians enjoy the most: take things to the limit. What if 𝑚
were 100? A million? A gazillion? Let us re-write the model equation:

𝑁(𝑡 + 1/𝑚) − 𝑁(𝑡) = 1/𝑚𝑁(𝑡) ⇒ 𝑁(𝑡 + 1/𝑚) − 𝑁(𝑡)
1/𝑚 = 𝑁(𝑡)

The expression on the left is known as Newton’s quotient that you encounter in the definition
of a derivative. It measures the rate of change of the population 𝑁 from some time 𝑡 to the
next time step 𝑡 + 1/𝑚. If 𝑚 is increased to make the time step smaller, this makes both the
numerator and the denominator smaller, and the quotient approaches the instantaneous rate
of change of 𝑁(𝑡). So, if bacteria divide at any point in time, with the average rate of 1
per hour, the model becomes a differential equation:

𝑑𝑁
𝑑𝑡 = 𝑁(𝑡)

We can do a similar procedure to the formula of the solution of the model. The dependence on
𝑚 is all on the left-hand side, in the expression (1+1/𝑚)𝑚, which is the base of the exponential
function. What happens to this number as 𝑚 becomes larger? Does it increase without bound?
You can investigate this numerically by plugging in progressively larger numbers 𝑚, and see
that the number approaches a specific value: 2.71828… This is the special constant 𝑒, called
the base of the natural logarithm. So, if bacteria divide at any point in time, with the average
rate of 1 per hour, the solution of the model becomes:

𝑁(𝑡) = 𝑒𝑡𝑁(0)

10.1.2 Exercises

Here we will explore the effect of changing the step size on the solution of a discrete time
dynamic model. We will use a very simple model of bacterial population growth, in which we
assume that bacteria divide once an hour and there are no deaths.

1. Calculate the solution for this population, assuming that all bacteria divide exactly once
an hour - in other words, a birth rate of one per individual. Starting with one bacterium
use a for loop to calculate the solution for 10 hours and print out the last value.

YOUR CODE HERE

2. Suppose that these bacteria can divide twice an hour, but only half of the population
divides each time - in other words, a per capita birth rate of 0.5 per half an hour. Change
your model so it calculates a solution vector with the time step of 30 minutes over 10
hours, print out the number of bacteria after 10 hours and compare it with the previous
value.

175

YOUR CODE HERE

3. Suppose that these bacteria divide every 15 minutes, but only one quarter of the popula-
tion divides each time - in other words, a per capita birth rate of 0.25 per quarter hour.
Change your model so it calculates a solution vector with the time step of 15 minutes
over 10 hours, print out the number of bacteria after 10 hours and compare it with the
previous value.

YOUR CODE HERE

4. Suppose that these bacteria divide every 1 minute, but only 1/60 of the population
divides each time - in other words, a per capita birth rate of 1/60 per minute. Change
your model so it calculates a solution vector with the time step of 1 minute over 10 hours,
print out the number of bacteria after 10 hours and compare it with the previous value.

YOUR CODE HERE

5. Suppose that these bacteria divide every second, but only 1/3600 of the population
divides each time - in other words, a per capita birth rate of 1/3600 per second. Change
your model so it calculates a solution vector with the time step of 1 second over 10 hours,
print out the number of bacteria after 10 hours and compare it with the previous value.

YOUR CODE HERE

6. Produce a plot of the five solutions of bacterial population dividing with different time
steps. Take the five code chunks from above, and copy them all into the chunk below.
For each calculation add a time vector that corresponds to each time step (e.g. one for
every hour for the first one, one for every second for the last one) and make a plot of
each of the solutions as function of time on the same plot - use plot() for the first one
and lines() for all the rest, with different colors and add a legend indicating different
time steps.

YOUR CODE HERE

What behaviors do you see for the solutions with different time steps? What effect does
shrinking the time step have on the solution? What do you expect would happen if the time
step were a millisecond, or a microsecond?

10.1.3 growth proportional to population size

We will now build some common differential equations models. First, a simple population
growth model with a constant growth rate. Suppose that in a population each individual

176

reproduces with the average reproductive rate 𝑟. This is reflected in the following differential
equation:

𝑑𝑥
𝑑𝑡 = ̇𝑥 = 𝑟𝑥 (10.1)

This expression states that the rate of change of 𝑥, which we take to be population size, is
proportional to 𝑥 with multiplicative constant 𝑟. We will sometimes use the notation ̇𝑥 for the
time derivative of 𝑥 (which was invented by Newton) for aesthetic reasons.

First, we apply dimensional analysis to this model. The units of the derivative are population
per time, as can be deduced from the Newton’s quotient definition. Thus, the units in the
equation have the following relationship:

[𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛]
[𝑡𝑖𝑚𝑒] = [𝑟][𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛] = 1

[𝑡𝑖𝑚𝑒] [𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛]

This shows that as in the discrete time models, the dimension of the population growth rate 𝑟
is inverse time, or frequency. The difference with the discrete time population models lies in
the time scope of the rate. In the case of the difference equation, 𝑟 is the rate of change per one
time step of the model. In the differential equation, 𝑟 is the instantaneous rate of population
growth. It is less intuitive than the growth rate per single reproductive cycle, just like the
slope of a curve is less intuitive than the slope of a line. The population growth happens
continuously, so the growth rate of 𝑟 individuals per year does not mean that if we start with
one individual, there will be 𝑟 after one year. In order to make quantitative predictions, we
need to find the solution of the equation, which we will see in the next section.

10.1.4 chemical kinetics

Reactions between molecules in cells occur continuously, driven by molecular collisions and
physical forces. In order to model this complex behavior, it is generally assumed that reactions
occur with a particular speed, known as the kinetic rate constant. As mentioned in chapter 2,
a simple reaction of conversion from one type of molecule (𝐴) to another (𝐵) can be written
as follows:

𝐴 𝑘−→ 𝐵
In this equation the parameter 𝑘 is the kinetic rate rate constant, describing the speed of
conversion of 𝐴 into 𝐵, per concentration of 𝐴.

Chemists and biochemists use differential equations to describe the change in molecular con-
centration during a reaction. These equations are known as the laws of mass action. For the
reaction above, the concentration of molecule 𝐴 decreases continuously proportionally to itself,
and the concentration of molecule 𝐵 increases continuously proportionally to the concentration
of 𝐴. This is expressed by the following two differential equations:

177

̇𝐴 = −𝑘𝐴 (10.2)
�̇� = 𝑘𝐴 (10.3)

Several conclusions are apparent by inspection of the equations. First, the dynamics depend
only on the concentration of 𝐴, so keeping track of the concentration of 𝐵 is superfluous. The
second observation reinforces the first: the sum of the concentrations of 𝐴 and 𝐵 is constant.
This is mathematically demonstrated by adding the two equations together to obtain the
following:

̇𝐴 + �̇� = −𝑘𝐴 + 𝑘𝐴 = 0

One of the basic properties of the derivative is that the sum of derivatives is the same as the
derivative of the sum:

̇𝐴 + �̇� = 𝑑(𝐴 + 𝐵)
𝑑𝑡 = 0

This means that the sum of the concentrations of 𝐴 and 𝐵 is a constant. This is a mathematical
expression of the law of conservation in chemistry: molecules can change from one type to
another, but they cannot appear or disappear in other ways. In this case, a single molecule
of 𝐴 becomes a single molecule of 𝐵, so it follows that the sum of the two has to remain the
same. If the reaction were instead two molecules of 𝐴 converting to a molecule of 𝐵, then the
conserved quantity is 2𝐴+𝐵. The concept of conserved quantity is very useful for the analysis
of differential equations. We will see in later chapters how it can help us find solutions, and
explain the behavior of complex dynamical systems.

10.1.5 building nonlinear ODEs

The simple, linear population growth models we have seen in the last two chapters assume
that the per capita birth and death rates are constant, that is, they stay the same regardless
of population size. The solutions for these models either grow or decay exponentially, but
in reality, populations do not grow without bounds. It is generally true that the larger a
population grows, the more scarce the resources, and survival becomes more difficult. For
larger populations, this could lead to higher death rates, or lower birth rates, or both.

How can we incorporate this effect into a quantitative model? We will assume there are
separate birth and death rates, and that the birth rate declines as the population grows, while
the death rate increases. Suppose there are inherent birth rates 𝑏 and 𝑑, and the overall birth
and death rates 𝐵 and 𝐷 depend linearly on population size 𝑃 : 𝐵 = 𝑏−𝑎𝑃 and 𝐷 = 𝑑 +𝑐𝑃 .

178

To model the rate of change of the population, we need to multiply the rates 𝐵 and 𝐷 by the
population size 𝑃 , since each individual can reproduce or die. Also, since the death rate 𝐷
decreases the population, we need to put a negative sign on it. The resulting model is:

̇𝑃 = 𝐵𝑃 − 𝐷𝑃 = [(𝑏 − 𝑑) − (𝑎 + 𝑐)𝑃]𝑃

The parameters of the model, the constants 𝑎, 𝑏, 𝑐, 𝑑, have different meanings. Performing
dimensional analysis, we find that 𝑏 and 𝑑 have the dimensions of 1/[𝑡], the same as the rate 𝑟
in the exponential growth model. However, the dimensions of 𝑎 (and 𝑐) must obey the relation:
[𝑃]/[𝑡] = [𝑎][𝑃]2, and thus,

[𝑎] = [𝑐] = 1
[𝑡][𝑃]

This shows that the constants 𝑎 and 𝑐 have to be treated differently than 𝑏 and 𝑑. Let us define
the inherent growth rate of the population, to be 𝑟0 = 𝑏 − 𝑑 (if the death rate is greater than
the birth rate, the population will inherently decline). Then let us introduce another constant
𝐾, such that (𝑎 + 𝑐) = 𝑟0/𝐾. It should be clear from the dimensional analysis that 𝐾 has
units of 𝑃 , population size. Now we can write down the logistic equation in the canonical
form:

̇𝑃 = 𝑟 (1 − 𝑃
𝐾) 𝑃 (10.4)

This model can be re-written as ̇𝑃 = 𝑎𝑃 − 𝑏𝑃 2, so it is clear that there is a linear term (𝑎𝑃)
and a nonlinear term (−𝑏𝑃 2). When 𝑃 is sufficiently small (and positive) the linear term is
greater, and the population grows. When 𝑃 is large enough, the nonlinear term wins and the
population declines.

It should be apparent that there are two fixed points, at 𝑃 = 0 and at 𝑃 = 𝐾. The first one
corresponds to a population with no individuals. On the other hand, 𝐾 signifies the population
at which the negative effect of population size balances out the inherent population growth
rate, and is called the carrying capacity of a population in its environment [?]. We will analyze
the qualitative behavior of the solution, without writing it down, in the next section of this
chapter.

10.2 Qualitative analysis of ODEs

In this section we will analyze the behavior of solutions of an autonomous ODE without solving
it on paper. Generally, ODE models for realistic biological systems are nonlinear, and most
nonlinear differential equations cannot be solved analytically. We can make predictions about

179

the behavior, or dynamics of solutions by considering the properties of the defining function,
which is the function on the right-hand-side of a general autonomous ODE:

𝑑𝑥
𝑑𝑡 = 𝑓(𝑥)

10.2.1 graphical analysis of the defining function

The defining function relates the value of the solution variable 𝑥 to its rate of change 𝑑𝑥/𝑑𝑡.
For different values of 𝑥, the rate of change of 𝑥(𝑡) is different, and it is defined by the function
𝑓(𝑥). There are only three options:

• if 𝑓(𝑥) > 0, 𝑥(𝑡) is increasing at that value of 𝑥
• if 𝑓(𝑥) < 0, 𝑥(𝑡) is decreasing at that value of 𝑥
• if 𝑓(𝑥) = 0, 𝑥(𝑡) is not changing that value of 𝑥

To determine for which values of 𝑥 the solution 𝑥(𝑡) increases and decreases, it enough to look
at the plot of 𝑓(𝑥). On the intervals where the graph of 𝑓(𝑥) is above the 𝑥-axis 𝑥(𝑡) increases,
on the intervals where the graph of 𝑓(𝑥) is below the 𝑥-axis, 𝑥(𝑡) decreases. The roots (zeros)
of 𝑓(𝑥) are special cases, they separate the range of 𝑥 into the intervals where the solution
grows and and where it decreases. This seems exceedingly simple, and it is, but it provides
specific information about 𝑥(𝑡), without knowing how to write down its formula.

For an autonomous ODE with one dependent variable, the direction of the rate of change
prescribed by the differential equation can be graphically represented by sketching the flow on
the line of the dependent variable. The flow stands for the direction of change at every point,
specifically increasing, decreasing, or not changing. The flow is plotted on the horizontal x-axis,
so if 𝑥 is increasing, the flow will be indicated by a rightward arrow, and if it is decreasing,
the flow will point to the left. The fixed points separate the regions of increasing (rightward)
flow and decreasing (leftward) flow.

Example. Consider a linear ODE the likes of which we have solved in section 11.1:

𝑑𝑥
𝑑𝑡 = 4𝑥 − 100

The defining function is a straight line vs. 𝑥, its graph is shown in figure ??a. Based on this
graph, we conclude that the solution decreases when 𝑥 < 25 and increases when 𝑥 > 25. Thus
we can sketch the solution 𝑥(𝑡) over time, without knowing its functional form. The dynamics
depends on the initial value: if 𝑥(0) < 25, the solution will keep decreasing without bound,
and go off to negative infinity; if 𝑥(0) > 25, the solution will keep decreasing without bound,
and go off to positive infinity. This is shown by plotting numeric solutions of this ODE for
several initial values in figure ??b. The dotted line shows the location of the special value of
25 which separates the interval of growth from the interval of decline.

180

−10 0 10 20 30 40 50

−
10

0
0

50

x

f(
x)

=
dx

/d
t

Figure 10.1: a) plot of the defining function of the ODE dx/dt = 4x-100 with direction of flow
x(t) indicated with arrows on the x-axis; b) plot of solutions x(t) of the ODE
staring with four initial values.

0.0 0.2 0.4 0.6 0.8 1.0

−
10

0
0

50

time

x(
t)

Figure 10.2: a) plot of the defining function of the ODE dx/dt = 4x-100 with direction of flow
x(t) indicated with arrows on the x-axis; b) plot of solutions x(t) of the ODE
staring with four initial values.

181

Example. Now let us analyze a nonlinear ODE, specifically the logistic model with the
following parameters:

𝑑𝑃
𝑑𝑡 = 0.3𝑃 (1 − 𝑃

40)

The defining function is a downward-facing parabola with two roots at 𝑃 = 0 and 𝑃 = 40, as
shown in figure ??a. Between the two roots, the defining function is positive, which means the
derivative 𝑑𝑃 /𝑑𝑡 is positive too, so the solution grows on that interval. For 𝑃 < 0 and 𝑃 > 40,
the solution decreases. Therefore, we can sketch the graphs of the solution 𝑃(𝑡) starting with
different initial conditions, as show in figure ??b.

To summarize, the defining function of the ODE determines the rate of change of the solution
𝑥(𝑡) depending on the value of 𝑥. The graphical approach to finding areas of right and left flow
is based on graphing the function 𝑓(𝑥), and dividing the x-axis based on the sign of 𝑓(𝑥). In
the areas where 𝑓(𝑥) > 0, its graph is above the x-axis, and the flow is to the right; conversely,
when 𝑓(𝑥) < 0, its graph is below the x-axis, and the flow is to the left. The next subsection
puts this approach in a more analytic framework.

−10 0 10 20 30 40 50

−
4

−
2

0
2

P (population)

dP
/d

t

Figure 10.3: a) plot of the defining function of the ODE 𝑑𝑃/𝑑𝑡 = 0.3𝑃(1−𝑃/40) with direction
of flow of P(t) indicated with arrows on the P-axis; b) plot of solutions P(t) of
the ODE staring with three initial values

10.2.2 fixed points and stability

We have seen that the dynamics of solutions of differential equations depend on the initial
value of the dependent variable: for some values the solution increases, for others it decreases,
and for intermediate values it remains the same. Those special values separating intervals of
increase and decrease are called fixed points (or equilibria), and the first step to understanding
the dynamics of an ODE is finding its fixed points. A fixed point is a value of the solution at
which the dynamical system stays constant, thus, the derivative of the solution must be zero.
Here is the formal definition:

182

0 5 10 15 20 25 30

0
20

40
time

po
pu

la
tio

n

Figure 10.4: a) plot of the defining function of the ODE 𝑑𝑃/𝑑𝑡 = 0.3𝑃(1−𝑃/40) with direction
of flow of P(t) indicated with arrows on the P-axis; b) plot of solutions P(t) of
the ODE staring with three initial values

Definition

For an ordinary differential equation ̇𝑥 = 𝑓(𝑥), a point 𝑥∗ which satisfies 𝑓(𝑥∗) = 0 is
called a fixed point or equilibrium, and the solution with the initial condition 𝑥(0) = 𝑥∗

is constant over time 𝑥(𝑡) = 𝑥∗.

Example. The linear equation ̇𝑥 = 𝑟𝑥 has a single fixed point at 𝑥∗ = 0. For a more
interesting example, consider a logistic equation: ̇𝑥 = 𝑥 − 𝑥2. Its fixed points are the solutions
of 𝑥 − 𝑥2 = 0, therefore there two fixed points: 𝑥∗ = 0, 1. We know that if the solution has
either of the fixed points as the initial condition, it will remain at that value for all time.

Locating the fixed points is not sufficient to predict the global behavior of the dynamical
system, however. What happens to the solution of a dynamical system if the initial condition
is very close to an equilibrium, but not precisely at it? Put another way, what happens if the
equilibrium is perturbed? The solution may be attracted to the equilibrium value, that is, it
approaches it ever-closer, or else it is not. In the first case, this is called a stable equilibrium,
because a small perturbation does not dramatically change the long-term behavior of the
solution. In the latter case, the equilibrium is called unstable, and the solution perturbed from
the equilibrium never returns. These concepts are formalized in the following definition

Definition

A fixed point 𝑥∗ of an ODE ̇𝑥 = 𝑓(𝑥) is called a stable fixed point (or sink) if for a
sufficiently small number 𝜖, the solution 𝑥(𝑡) with the initial condition 𝑥0 = 𝑥∗ + 𝜖
approaches the fixed point 𝑥∗ as 𝑡 → ∞. If the solution 𝑥(𝑡) does not approach 𝑥∗ for all
nonzero 𝜖, the fixed point is called an unstable fixed point (or source).

To determine whether a fixed point is stable analytically we use the approach called lineariza-

183

tion, which involves replacing the function 𝑓(𝑥) with a linear approximation. Let us define 𝜖(𝑡)
to be the deviation of the solution 𝑥(𝑡) from the fixed point 𝑥∗, so we can write 𝑥(𝑡) = 𝑥∗ +𝜖(𝑡).
Assuming that 𝜖(𝑡) is small, we can write the function 𝑓(𝑥) using Taylor’s formula:

𝑓(𝑥∗ + 𝜖(𝑡)) = 𝑓(𝑥∗) + 𝑓 ′(𝑥∗)𝜖(𝑡) + ... = 𝑓 ′(𝑥∗)𝜖(𝑡) + ...

The term 𝑓(𝑥∗) vanished because it is zero by definition ?? of a fixed point. The ellipsis
indicates all the terms of order 𝜖(𝑡)2 and higher, which are very small if 𝜖(𝑡) is small, and thus
can be neglected. Thus, we can write the following approximation to the ODE ̇𝑥 = 𝑓(𝑥) near
a fixed point:

̇𝑥 = 𝑑(𝑥∗ + 𝜖(𝑡))
𝑑𝑡 = ̇𝜖(𝑡) = 𝑓 ′(𝑥∗)𝜖(𝑡)

Thus we replaced the complicated nonlinear ODE near a fixed point with a linear equation,
which approximates the dynamics of the deviation 𝜖(𝑡) near the fixed point 𝑥∗; note that the
derivative 𝑓 ′(𝑥∗) is a constant for any given fixed point. In section 11.1 we classified the
behavior of solutions for the general linear ODE ̇𝑥 = 𝑟𝑥, and now we apply this classification
to the behavior of the deviation 𝜖(𝑡). If the multiple 𝑓 ′(𝑥∗) is positive, the deviation 𝜖(𝑡) is
growing, the solution is diverging away from the fixed point, and thus the fixed point is unstable.
If the multiple 𝑓 ′(𝑥∗) is negative, the deviation 𝜖(𝑡) is decaying, the solution is converging to
the fixed point, and thus the fixed point is stable. Finally, there is the borderline case of
𝑓 ′(𝑥∗) = 0 which is inconclusive, and the fixed point may be either stable or unstable. The
derivative stability analysis is summarized in the following:

• 𝑓 ′(𝑥∗) > 0: the slope of 𝑓(𝑥) at the fixed point is positive, then the fixed point is
unstable.

• 𝑓 ′(𝑥∗) < 0: the slope of 𝑓(𝑥) at the fixed point is negative, then the fixed point is stable.
• 𝑓 ′(𝑥∗) = 0: stability cannot be determined from the derivative.

Therefore, knowing the derivative or the slope of the defining function at the fixed point is
enough to know its stability. If the derivative has the discourtesy of being zero, the situation is
tricky, because then higher order terms that we neglected make the difference. We will mostly
avoid such borderline cases, but they are important in some applications [?].

A word of caution: The derivative of the defining function 𝑓 ′(𝑥) is not the second derivative
of the solution 𝑥(𝑡). This is a common mistake, because the function 𝑓(𝑥) is equal to the time
derivative of 𝑥(𝑡). However, the derivative 𝑓 ′(𝑥) is not with respect to time, it is with respect
to x, the dependent variable. In other words, it reflects the slope of the graph of the defining
function 𝑓(𝑥), not the curvature of the graph of the solution 𝑥(𝑡).
To summarize, here is an outline of the steps for analyzing the behavior of solutions of an
autonomous one-variable ODE. These tasks can be accomplished either by plotting the defining
function 𝑓(𝑥) and finding the fixed points and their stability based on the plot, or by solving

184

for the fixed points on paper, then finding the derivative 𝑓 ′(𝑥) and plugging in the values of
the fixed points to determine their stability. Either approach is valid, but the analytic methods
are necessary when dealing with models that have unknown parameter values, which makes it
impossible to represent the defining function in a plot.

10.2.3 Outline of qualitative analysis of an ODE

• find the fixed points by setting the defining function 𝑓(𝑥) = 0 and solving for values of
𝑥∗

• divide the domain of 𝑥 into intervals separated by fixed points 𝑥∗

• determine on which interval(s) the solution 𝑥(𝑡) is increasing and on which it is decreasing

• use derivative stability analysis (graphically or analytically) to determine which fixed
points are stable

• sketch the solutions 𝑥(𝑡) starting at different initial values, based on the stability analysis
and whether the solution is increasing or decreasing in a particular interval

Example: linear model. Consider the linear ODE that we analyzed above 𝑑𝑥/𝑑𝑡 = 4𝑥−100.
Let us go through the steps of qualitative analysis:

• find the fixed points by setting the defining function to 0: 0 = 4𝑥 − 100, so there is only
one fixed point 𝑥∗ = 25

• divide the domain of 𝑥 into intervals separated by fixed points 𝑥∗: the intervals are
𝑥 < 25 and 𝑥 > 25

• the solution is decreasing on the interval 𝑥 < 25 because 𝑓(𝑥) < 0 there, and the solution
is increasing on the interval 𝑥 > 25 because 𝑓(𝑥) > 0

• the derivative 𝑓 ′(𝑥) at the fixed point is 4, so the fixed point is unstable

• solutions 𝑥(𝑡) starting at different initial values are shown in figure ??b and they behave
as follows: solutions with initial values below 𝑥∗ = 25 decreasing, and those with initial
values above 𝑥∗ = 25 increasing.

** Example: logistic model.** Consider the logistic model from the previous subsection,
𝑑𝑃/𝑑𝑡 = 0.3𝑃 (1−𝑃 /40). We have analyzed the stability of the two fixed points using the plot
in figure ??, and saw that the flow takes the solution away from 𝑃 = 0, and toward 𝑃 = 𝐾,
thus the first fixed point is unstable, while the second is stable. Let us repeat the analysis
using analytic tools:

• find the fixed points by setting the defining function to 0: 0 = 0.3𝑃(1 − 𝑃/40). The two
solutions are 𝑃 ∗ = 0 and 𝑃 ∗ = 40.

185

• divide the domain of 𝑃 into intervals separated by fixed points 𝑃 ∗: the intervals are
𝑃 < 0; 0 < 𝑃 < 40; and 𝑃 > 40

• the solution is decreasing on the interval 𝑃 < 0 because 𝑓(𝑃) < 0 there, the solution is
increasing on the interval 0 < 𝑃 < 40 because 𝑓(𝑃) > 0, and the solution is decreasing
for 𝑃 > 40 because 𝑓(𝑃) < 0 there

• the derivative is 𝑓 ′(𝑃) = 0.3−0.3𝑃/20; since 𝑓 ′(0) = 0.3 > 0, the fixed point is unstable;
since 𝑃 ′(40) = −0.3 < 0, the fixed point is stable

• solutions 𝑃(𝑡) starting at different initial values are shown in figure ??b and they behave
as follows: solutions with initial values below 𝑃 ∗ = 0 decreasing, those with initial
values between 0 and 40 are increasing and asymptotically approaching 40, and those
with initial values above 40 decreasing and asymptotically approaching 40.

This can be done more generally using the derivative test: taking the derivative of the function
on the right-hand-side (with respect to 𝑃), we get 𝑓 ′(𝑃) = 𝑟(1 − 2 𝑃

𝐾). Assuming 𝑟 > 0 (the
population is viable), 𝑓 ′(0) = 𝑟 is positive, and the fixed point is therefore unstable. This
makes biological sense, since we assumed positive inherent population growth, so given a few
individuals, it will increase in size. On the other hand, 𝑃 ′(𝐾) = 𝑟(1 − 2) = −𝑟, so this fixed
point is stable. Thus, according to the logistic model, a population with a positive inherent
growth rate will not grow unchecked, like in the exponential model, but will increase until it
reaches its carrying capacity, at which it will stay (if all parameters remain constant).

Example: semi-stable fixed point. Consider the ODE 𝑑𝑥/𝑑𝑡 = −𝑥3 + 𝑥2, whose defining
function is plotted in figure ??a, showing two fixed points at 𝑥 = 0, 1.

• find the fixed points by setting the defining function to 0: 0 = −𝑥3 + 𝑥2. The two fixed
points are 𝑥∗ = 0 and 𝑥∗ = 1.

• divide the domain of 𝑥 into intervals separated by fixed points 𝑥∗: the intervals are 𝑥 < 0;
0 < 𝑥 < 1; and 𝑥 > 1

• the solution is increasing on the interval 𝑥 < 0 because 𝑓(𝑥) > 0 there, the solution is
increasing on the interval 0 < 𝑥 < 1 because 𝑓(𝑥) > 0, and the solution is decreasing for
𝑥 > 1 because 𝑓(𝑥) < 0 there

• the derivative is 𝑓 ′(𝑥) = −3𝑥2 + 2𝑥; since 𝑓 ′(0) = 0, the fixed point is undetermined;
since 𝑓 ′(1) = −1 < 0, the fixed point is stable.

• the solutions 𝑥(𝑡) starting at different initial values are shown in figure ??b, and they
behave as follows: solutions with initial values below 0 are increasing and asymptotically
approaching 0, those with initial values between 0 and 1 are increasing and asymptotically
approaching 1, and those with initial values above 1 are decreasing and asymptotically
approaching 1.

186

This example shows how graphical analysis can help when derivative analysis is undetermined.
The red arrows on the x-axis of figure ?? show the direction of the flow in the three different
regions separated by the fixed points. Flow is to the right for 𝑥 < 1, to the left for for 𝑥 > 1;
it is clear that the arrows approach the fixed point from both sides, and thus the fixed point
is stable, as the negative slope of 𝑓(𝑥) at 𝑥 = 1 indicates. One the other hand, the fixed point
at 𝑥 = 0 presents a more complicated situation: the slope of 𝑓(𝑥) is zero, and the flow is
rightward on both sides of the fixed point. This type of fixed point is sometimes called semi-
stable, because it is stable when approached from one side, and unstable when approached
from the other.

−1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

0
0.

0
1.

0
2.

0

x

dx
/d

t

Figure 10.5: a) plot of the defining function of the ODE 𝑑𝑥/𝑑𝑡 = −𝑥3 + 𝑥2 with direction of
flow of x(t) indicated with arrows on the x-axis; b) plot of solutions x(t) of the
ODE staring with three initial values

0 5 10 15

−
1.

0
0.

0
1.

0

time

x(
t)

Figure 10.6: a) plot of the defining function of the ODE 𝑑𝑥/𝑑𝑡 = −𝑥3 + 𝑥2 with direction of
flow of x(t) indicated with arrows on the x-axis; b) plot of solutions x(t) of the
ODE staring with three initial values

187

10.2.4 Exercises

For the following differential equations: a) plot the defining function over the indicated range
(use any computational tools you wish) to determine the intervals on which the dependent
variable is increasing and decreasing; b) find the equilibria c) determine the stability of each
equilibrium; d) based on your analysis in parts a-c, sketch (by hand) plots of the solutions
with the specified initial values.

1. 𝑑𝐶
𝑑𝑡 = −0.2𝐶 + 60; 𝐶 ∈ (0, 500); 𝐶(0) = 200; 𝐶(0) = 400

2. 𝑑𝑃
𝑑𝑡 = 0.01𝑃(800 − 𝑃) − 0.5𝑃 ; 𝑃 ∈ (−1, 1000); 𝑃 (0) = 100; 𝑃 (0) = 800

3.
𝑑𝑅
𝑑𝑡 = 𝑅(80 − 𝑅) − 1200; 𝑅 ∈ (−1, 100); 𝑅(0) = 10; 𝑅(0) = 80

4. 𝑑𝐼
𝑑𝑡 = 0.1𝐼(1 − 𝐼) − 0.03𝐼; 𝐼 ∈ (−0.1, 1.1); 𝐼(0) = 0.2; 𝐼(0) = 0.9

5.
𝑑𝑅
𝑑𝑡 = 𝑅

1 + 𝑅 − 0.1𝑅; 𝑅 ∈ (−0.1, 10); 𝑅(0) = 20; 𝑅(0) = 0

6.
𝑑𝑃
𝑑𝑡 = 0.02𝑃(𝑃 − 100)(1200 − 𝑃) 𝑃 ∈ (−0.1, 1200); 𝑃 (0) = 20; 𝑃 (0) = 1000

7.
𝑑𝑌
𝑑𝑡 = 0.01𝑌 (𝑌 − 100)(𝑌 − 200) 𝑌 ∈ (−0.1, 300); 𝑌 (0) = 20; 𝑌 (0) = 250

8. (harder) The logistic function was defined in chapter 2, equation 2.4. Verify that the
logistic function with independent variable 𝑡 solves the logistic ODE in equation 10.4
and relate the parameters in the function to the parameters 𝑟 and 𝐾 in the ODE.

188

10.3 Functions in R

Like most programming languages, R allows one to define and use structures called functions.
Some are already written and loaded into the R distribution, for example, the function mean()
we use to compute the mean of a vector variable, while others can be defined by users. Func-
tions are discrete chunks of code that can be called from the outside to perform some task.
The function receives inputs from the call and returns the result back. Here is the general
structure of a function in R:

myfunction <- function(arg1, arg2, ...){
statements
return(answer)

}

A function is a piece of code that is defined separately and can be called by other pieces
of code. The main purpose is to create a “black box” that does a specific job and can be
used repeatedly just by calling the function (invoking its name), rather than copying the code
repeatedly.

A function generally has input variables (although sometimes there are none) and returns an
output using the return() statement. It is important to distinguish between the inside of the
function - the code between the curly braces in the function definition - and the outside, that
is everything else. The inputs are passed to the function in the call (through the parentheses)
and then used inside the function to do its business and produce an output, which is then
returned back to the place in the code where the function was called.

10.3.1 defining a function

Here is an example of a function definition, with input variables N and r. Between the curly
braces is the body of the function, which in this case multiplies the two input variables and
then returns them.

my_funk <- function(N,r){
ans <- r*N # updating function f(N)
return(ans)

}

Note that after running the code chunk above, you should see the name my_funk in your
environment (under Functions). This means this function is defined in memory and ready to
be called.

189

10.3.2 calling a function

After a function is defined, it is ready to be called (executed) by invoking its name and giving
the correct number of inputs. Here’s an example of a function call:

a <- 30
y <- 1:10
print(my_funk(y, a))

[1] 30 60 90 120 150 180 210 240 270 300

Notice that the variable names in the fuction call do not have to be same as what they are
called within the function. IMPORTANT: a function uses the order of variables in the function
call, called external variables (y, a) to assign their names within the function, called internal
variables (N, r). (There is a way to specify which input belongs to which internal variable,
e.g. plot(x=time, y=sol) and in that case the order is not important.)

10.3.3 using a function to solve a difference equation

We have solved discrete-time dynamic models (difference equations) using for loops. You can
use a function to calculate the next value of the solution, by passing the current value and any
parameters as inputs to the function, as you can see in the code chunk below:

numsteps<-30 # set number of steps
sol <- rep(0,numsteps+1) # pre-allocate sol1
sol[1] <- 100 # set initial value
r <- 2 # define the multiplicative constant
for (i in 1:numsteps) { # repeat for numsteps
sol[i+1] <- my_funk(sol[i], r) # calculate the next value

}
time <- 0:numsteps # define time vector
plot(time,sol,t='b',xlab='time',ylab='solution',lwd=2)

190

0 5 10 15 20 25 30

0e
+

00
6e

+
10

time

so
lu

tio
n

10.3.4 Exercises

1. Write a function that takes the input variable and multiplies it by 1.03, like the mathe-
matical function 𝑓(𝑥) = 1.03𝑥.

YOUR CODE HERE

2. Use the function to take a variable and multiply it by 1.03, replacing the old value of
the variable. If the initial value is 5, the new value should be 5.15.

YOUR CODE HERE

3. Write a script to take a variable and multiply it by 1.03 one hundred times, replacing the
old value of the variable using a for loop and the function you created. Starting
with the initial value is 5, the script should return the value 96.093.

YOUR CODE HERE

4. Modify the script above to save all the intermediate values into a vector, and plot a
graph of this vector vs. the iteration step (from 1 to 101). Hint: this is exactly like the
example code above.

YOUR CODE HERE

191

10.4 Modeling the spread of infectious disease spread

The field of epidemiology studies the distribution of disease and health states in populations.
Epidemiologists describe and model these issues with the goal of helping public health workers
devise interventions to improve the overall health outcomes on a large scale. One particular
topic of interest is the the spread of infectious disease and how best tor respond to it.. Because
epidemiology is concerned with large numbers of people, the models used in the field do
not address the details of an individual disease history. One approach to modeling this is
to put people into categories, such as susceptible (those who can be infected but are not),
infectious (those who are infected and can spread the disease), and recovered (those who
cannot be infected or spread disease). This type of models is called a compartment model
and they are they commonly used to represent infectious disease on a population level both
for deterministic models (e.g. ODEs) and stochastic models (e.g. Markov models). Dividing
people into categories involves the assumption that everyone in a particular category behaves
in the same manner: for instance, all susceptible people are infected with the same rate and
all infected people recover with the same rate.

Let us construct an ODE to describe a two-compartment epidemiology model. There are two
dependent variables to be tracked: the number of susceptible (𝑆) and infected (𝐼) individuals
in the population. The susceptible individuals can get infected, while the infected ones can
recover and become susceptible again. The implicit assumption is that there is no immunity,
and recovered individuals can get infected with the same ease as those who were never in-
fected. There are some human diseases for which this is true, for instance the common cold or
gonorrhea. Transitions between the different classes of individuals can be summarized by the
following scheme:

𝑆 + 𝐼
𝛽
−→ 𝐼

𝛾
−→ 𝑆

Here 𝛽 is the individual rate of infection, also known as the transmission rate, and 𝛾 is the
individual rate of recovery. There is an important distinction between the processes of infection
and recovery: the former requires an infected individual and a susceptible individual, while
the latter needs only an infected individual. Therefore, it is reasonable to suppose that the
rate of growth of infected individuals is the product of the individual transmission rate 𝛽 and
the product of the number of infected and susceptible individuals. The overall rate of recovery
is the individual recovery rate 𝛾 multiplied by the number of the infected. This leads to the
following two differential equations:

̇𝑆 = −𝛽𝐼𝑆 + 𝛾𝐼
̇𝐼 = 𝛽𝐼𝑆 − 𝛾𝐼

Note that, as in the chemical kinetics models, the two equations add up to zero on the right
hand side, leading to the conclusion that ̇𝑆 + ̇𝐼 = 0. Therefore, the total number of people is
a conserved quantity 𝑁 , which does not change. This makes sense since we did not consider
any births or deaths in the ODE model, only transitions between susceptible and infected
individuals.

192

We can use the conserved quantity 𝑁 to reduce the two equations to one, by the substitution
of 𝑆 = 𝑁 − 𝐼 :

̇𝐼 = 𝛽𝐼(𝑁 − 𝐼) − 𝛾𝐼
This model may be analyzed using qualitative methods that were developed in this chapter,
allowing prediction of the dynamics of the fraction of infected for different transmission and
recovery rates. First, let us find the fixed points of the differential equation. Setting the
equation to zero, we find:

0 = 𝛽𝐼(𝑁 − 𝐼) − 𝛾𝐼 ⇒ 𝐼∗ = 0; 𝐼∗ = 𝑁 − 𝛾/𝛽

This means that there are two equilibrium levels of infection: either nobody is infected (𝐼∗ = 0)
or there is some persistent number of infected individuals ($ I^* = N - �/�$). Notice that the
second fixed point is only biologically relevant if $N > �/�$.

Use the derivative test to check for stability. First, find the general expression for derivative of
the defining function: $f’(I) = -2 �I + �N - �$. \begin{figure}[htbp] % figure placement: here,
top, bottom, or page

−0.2 0.2 0.4 0.6 0.8 1.0 1.2

−
0.

3
−

0.
1

I (fraction of infected)

dI
/d

t

Figure 10.7: Graphical analysis of the SIS model with 𝐼 representing the fraction of infected
individuals (N=1) and beta=0.5 and gamma = 0.2; a) plot showing the flow
of the solutions on the I-axis, with a stable equilibrium at 0.6 and an unstable
equilibrium at 0; b) three solutions of the model starting at three different initial
values all converge to the same fraction of infected.

The stability of the fixed point 𝐼∗ = 0 is found by plugging in this value into the derivative
formula: $f’(0) = �N - �$. We learned in section 10.2 that a fixed point is stable if the derivative
of the defining function is negative. Therefore, 𝐼∗ = 0 is stable if 𝛾 − 𝛽𝑁 > 0, and unstable
otherwise. This gives us a stability condition on the values of the biological parameters. If
the recovery rate 𝛾 is greater than the rate of infection for the population (the transmission
rate multiplied by the population size) 𝛽𝑁 , then the no-infection equilibrium is stable. This
predicts that the infection dies out if the recovery rate is faster than the rate of infection,
which makes biological sense.

193

0 5 10 15
0.

0
0.

4
0.

8

time

fr
ac

tio
n

of
 in

fe
ct

ed

Figure 10.8: Graphical analysis of the SIS model with 𝐼 representing the fraction of infected
individuals (N=1) and beta=0.5 and gamma = 0.2; a) plot showing the flow
of the solutions on the I-axis, with a stable equilibrium at 0.6 and an unstable
equilibrium at 0; b) three solutions of the model starting at three different initial
values all converge to the same fraction of infected.

−0.5 0.0 0.5 1.0

−
0.

4
−

0.
2

0.
0

I (fraction of infected)

dI
/d

t

Figure 10.9: Graphical analysis of the SIS model with I representing the fraction of infected
individuals (N=1) and beta=0.2 and gamma = 0.3; a) plot showing the flow of the
solutions on the I-axis, with a stable equilibrium at 0 and an unstable equilibrium
at -0.5; b) three solutions of the model starting at three different initial values all
converge to 0 infected.

194

0 5 10 15

−
0.

5
0.

0
0.

5
1.

0
time

fr
ac

tio
n

of
 in

fe
ct

ed

Figure 10.10: Graphical analysis of the SIS model with I representing the fraction of infected
individuals (N=1) and beta=0.2 and gamma = 0.3; a) plot showing the flow
of the solutions on the I-axis, with a stable equilibrium at 0 and an unstable
equilibrium at -0.5; b) three solutions of the model starting at three different
initial values all converge to 0 infected.

Similarly, we find the stability of the second fixed point 𝐼∗ = 𝑁 −𝛾/𝛽 by substituting its value
into the derivative, to obtain 𝑓 ′(𝑁 − 𝛾/𝛽) = 𝛾 − 𝛽𝑁 . By the same logic, as above, this fixed
point is stable if 𝛾 − 𝛽𝑁 < 0, or if 𝛾 < 𝛽𝑁 . This is a complementary condition for the fixed
point at 0, that is, only one fixed point can be stable for any given parameter values. In the
biological interpretation, if the transmission rate 𝛽𝑁 is greater than the recovery rate 𝛾, then
the epidemic will persist.

We can use our graphical analysis skills to illustrate the situation. Consider a situation in
which 𝛾 < 𝛽𝑁 . As predicted by stability analysis, the zero infection equilibrium should be
unstable, and the equilibrium at 𝑁 − 𝛾/𝛽 should be stable. In order to plot the function $f(I)
= �I (N - I) - �I $, we choose the specific parameter values 𝑁 = 1, 𝛾 = 0.1 and 𝛽 = 0.2; setting
𝑁 = 1 means 𝑆 and 𝐼 represent the fraction of the population in the susceptible and infected
categories. Figure ??a shows the direction of the flow on the 𝐼-axis prescribed by the defining
function 𝑓(𝐼) with red arrows. It is clear that solutions approach the fixed point at 𝑁 − 𝛾/𝛽
from both directions, which make it a stable fixed point, while diverging from 𝐼 = 0, as shown
in figure ??b.

On the other hand, if 𝛾 > 𝛽𝑁 , stability analysis predicts that the no-infection equilibrium
(𝐼 = 0) is stable. Figure ??a shows the plot of the defining function for the parameter values
𝑁 = 1, 𝛾 = 0.3 and 𝛽 = 0.2. The flow on the 𝐼-axis is toward the zero equilibrium, therefore
it is stable. Note that the second equilibrium at 𝐼∗ = 𝑁 − 𝛾/𝛽 is negative, and thus has no
biological significance. The solutions, if the initial value is positive, all approach 0, so the
infection inevitably dies out.

Mathematical modeling of epidemiology has been a success story in the last few decades.
Public health workers routinely estimate the parameter called the basic reproductive number
𝑅0 defined to be the average number of new infections caused by a single infected individual

195

in a susceptible population. This number comes out of our analysis above, where we found
𝑅0 = 𝑁𝛽/𝛾 to determine whether or not an epidemic persisted [?]. This number is critical in
more sophisticated models of epidemiology.

Mathematical models are used to predict the time course of an epidemic, called the epidemic
curve and then advise on the public health interventions that can reduce the number of affected
individuals. In reality, most epidemic curves have the shape similar to the data from the Ebola
virus epidemic in figure ??. Most such curves show an initial increase in infections, peaking,
and the declining to low levels, which is fundamentally different than the solution curves we
obtained from the two-compartment model. To describe dynamics of this nature, models with
more than two variables are needed, such as classic three-compartment SIR models (susceptible-
infected-recovered) models and their modifications [?]. Being able to predict the future of an
epidemic based on 𝑅0 and other parameters allows public health officials to prepare and
deploy interventions (vaccinations, quarantine, etc.) that have the best shot at minimizing the
epidemic.

1 7 14 22 30 38 46 54

time (weeks)

ne
w

 e
bo

la
 c

as
es

0
10

0
30

0

Figure 10.11: Number of new cases of ebola virus infections per week in Liberia (left) and
Sierra Leone (right), time ranging from March 17, 2014 (week 1) until May 20,
2015 (week 61). Data from http://apps.who.int/gho/data/node.ebola-sitrep.

10.4.1 Discussion

The following questions encourage you to think critically about modeling of infectious dis-
eases.

1. What effect does changing the infection rate 𝛽 have on the basic reproductive rate?
Explain the biological intuition behind this.}

2. What effect does changing the recovery rate 𝛾 have on the basic reproductive rate?
Explain the biological intuition behind this.}

3. Discuss what assumptions are made by using compartment models, and when they might
be justified.}

196

1 7 14 22 30 38 46 54

time (weeks)
ne

w
 e

bo
la

 c
as

es

0
20

0
40

0
Figure 10.12: Number of new cases of ebola virus infections per week in Liberia (left) and

Sierra Leone (right), time ranging from March 17, 2014 (week 1) until May 20,
2015 (week 61). Data from http://apps.who.int/gho/data/node.ebola-sitrep.

4. Discuss the difference in assumptions in using a Markov model with Susceptible and
Infected compartments compared to an ODE model with the same two compartments.
Under what circumstances does it make sense to use one or the other?}

5. Read the paper [?] and discuss the strengths and limitations of the more complicated
compartment model intended to account for human behavior.}

197

Tutorial 9: numeric solutions of ODEs

Objectives:

• Use functions and the deSolve package to calculate numeric solutions of ODEs
• Use functions to graph the defining functions of ODEs
• Pass function names to other functions (optional)

Numeric solution of differential equations

We will use the package deSolve to calculate numeric solutions of ODEs. First, we need to
create the R function that defines the derivative in the differential equation, in other words,
the function 𝑓(𝑥, 𝑡) in the generic first-order ODE

𝑑𝑥
𝑑𝑡 = 𝑓(𝑥, 𝑡)

This R function must have three inputs: t, x, parms, in that order, representing the time
variable, the dependent variable x, and the vector of parameters parms. Let us illustrate this
on the linear population model with birth rate b and death rate d:

𝑑𝑁
𝑑𝑡 = 𝑏𝑁 − 𝑑𝑁

To solve this ODE with define the function that calculates the function on the right-hand-side
(bN-dN). Notice that even though the function does not depend on time, t still must be the
first input argument of the function:

library(deSolve)
pop_funk <- function(t,N,parms){
b <- parms[1] # assign birth rate
d <- parms[2] # assign death rate
dNdt <- b*N - d*N # calculate the derivative
list(dNdt) # return the derivative

}

198

The first two lines extract the two parameters b and d from the vector of parameter values,
the next line calculate the value of the derivative, and the last one returns it.

Third, we assign the parameter values to the vector, create a time vector on which to solve
the ODE, and assign the initial condition(s):

b <- 0.3 # birth rate
d <- 0.25 # death rate
parms <- c(b, d) # put parameters into vector
time <- seq(0, 100, 10) # time vector
init <- c(N=1000) # initial value of dependent variable N

Finally, we are ready to call the function ode that will do all the work to solve this ODE using
the function pop_funk:

output <- as.data.frame(
ode(func=pop_funk, y=init, times=time, parms=parms)
)

The output is a data frame, which means that you can use the data= option in plot to make
your graph of the solution as a function of time:

plot(N ~time, data=output)

This solution, like all numeric solutions of ODEs, is an approximation of the exact (analytic)
solution. In this case, we can find (and verify) the exact solution of this model:

𝑁(𝑡) = 𝑁(0)𝑒(𝑏−𝑑)𝑡

Thus we can plot the analytic solution along with the numeric solution to see how far off they
are:

exact <- init*exp((b-d)*time)
plot(N ~time, data=output)
lines(time, exact, col = 'red')
legend("topleft", legend = c('numeric', 'exact'), col = c('black', 'red'), lty=c(0,1), pch = c(1,NA))

You can see that the ODE solver is so clever that the numeric solution appears identical to
the exact solution, even though there is always some degree of error in numeric solutions of
ODEs.

199

Plotting defining functions of ODEs

Suppose we modify the defining function of the ODE to include a constant term C:

𝑑𝑁
𝑑𝑡 = 𝑏𝑁 − 𝑑𝑁 + 𝐶

The R function for the ODE can be defined as follows:

pop_funk2 <- function(t,N,parms){
b <- parms[1] # assign birth rate
d <- parms[2] # assign death rate
C <- parms[3] # assign constant rate
dNdt <- b*N - d*N + C # calculate the derivative
list(dNdt) # return the derivative

}

To analyze the ODE graphically, let us create a plot of the defining function 𝑓(𝑁) over a range
of values of 𝑁 . This requires choosing a range that includes all the zeros of the function 𝑓(𝑁),
which are the fixed points of the ODE. So if we let 𝑏 = 0.3, 𝑑 = 0.32, and 𝐶 = 1, the function
𝑓(𝑁) = −0.02𝑁 + 1 has a zero at 50, so we can assign the range of values of N from 0 to 100
and make a graph of the function over this range:

b <- 0.3 # proportional birth rate
d <- 0.32 # proportional death rate
C <- 1 # constant rate
parms <- c(b,d,C)
N <- seq(0,100,0.5)
time <- seq(0,10,0.1)
dNdt <- pop_funk2(time, N, parms)
dNdt <- unlist(dNdt)
plot(N, dNdt, type ='l', lwd =2,

xlab = 'N', ylab = 'dN/dt')
abline(0,0)

Note that we need to use the function unlist() to turn dNdt into a regular vector from a list
(the list structure is necessary for it to work with the function ode). Also note that we had to
define the vector time even though it is not used in the calculation because it is an input of
the function pop_funk2m again because it’s required by ode.

The plot of the defining function shows the rate of change of the solution (dN/dt) as a function
of N. For population values below the fixed point of 50, solutions grow, while for N>50 solutions

200

decay, both converging to the asymptotic value of 50. This can be shown by plotting several
solutions obtained by calling ode:

time <- seq(0, 100, 10) # time vector
init <- c(N=100) # initial value of dependent variable N
output <- as.data.frame(
ode(func=pop_funk2, y=init, times=time, parms=parms)
)

plot(N ~time, data=output, t = 'l', ylim=c(0,100))
init <- c(N=20) # initial value of dependent variable N
output <- as.data.frame(
ode(func=pop_funk2, y=init, times=time, parms=parms)
)

lines(N ~time, data=output, col = 'red')
abline(50,0, lty=2)
legend("bottomright", legend = c('N(0)=100', 'N(0)=20'), col = c('black', 'red'), lty=1, pch = NA)

Calling functions using strings (optional)

For the curious, here is a way to specify and call a function based on a given character string.
You can see that calling the new_fun()is the same as calling the original function blah():

crap <- function (x) {
return (2*x)

}

crap(4)
new_fun <- match.fun("crap")
#new_fun(4)

This is very useful if you want to pass the name of a function as a string (e.g. blah) to another
function (e.g. my_funk), so then it can be used to call the specified function from within
my_funk. This allows you to write a general function that can call any number of functions
and perform the same calculations with them.

my_funk <-function(fun_name) {
new_fun <- match.fun(fun_name)
print(new_fun(4))

}
my_funk('blah')

201

11 Solutions of ordinary differential equations

He felt a restless, vague ambition
A craving for a change of air
(A most unfortunate condition,
A cross not many choose to bear.)
– Alexander Pushkin, Eugene Onegin

In the last chapter we learned about differential equations and how to use graphical analysis
to find equilibria and predict the long-term behavior of the solutions. In this chapter we will
examine two methods for generating the detailed solutions of ODEs: analytic and numeric.

There are at least two good reasons to use differential equations for many applications. First,
they are often more realistic than discrete time models, because some events happen very fre-
quently and non-periodically. The second reason is mathematical: it turns out that dynamical
systems with continuous time, described by differential equations, are better behaved than
difference equations. This has to do with the essential “jumpiness” of difference equations.
Even for simple nonlinear equations, the value of the variable after one time step can be far
removed from its last value. This can lead to highly complicated solutions, as we saw in some
of the numerical solutions in the last chapter.

That kind of erratic behavior is impossible in (reasonable) differential equations. Solutions of
ODEs are generally smooth and predictable, as long they are defined by continuous defining
function, the flow produces smooth solutions. Sometimes, they can be written down exactly,
as a mathematical function, called an analytic solution. For most ODEs, particularly nonlin-
ear ones, that is not possible, but then computational methods can be used to produce an
approximate numeric solution that can visualize the behavior of the solutions.

• find and verify analytic solutions of linear differential equations

• compute numerical solutions of differential equations using the Forward Euler method

• explore the relationship between numeric error and step size

202

11.1 Solutions of ordinary differential equations

In this section we will investigate how to write down analytic solutions for ordinary differen-
tial equations (ODEs). Let us first define the mathematical terms that will be used in this
discussion.

Definition

An ordinary differential equation is an equation that contains derivatives of the dependent
variable (e.g. 𝑥) with respect to an independent variable (e.g. 𝑡). For example:

𝑑𝑥2

𝑑𝑡2 + 0.2𝑑𝑥
𝑑𝑡 − 25 = 0

For the time being, we will restrict ourselves to ODEs with the highest derivative being of
first order, called first-order ODEs. Second-order ODEs are common in models derived from
physics, but can actually be converted to first-order ODEs, though it requires an additional
dependent variable. Third and higher order ODEs are very uncommon. To be precise:

Definition

A first-order ODE is one where the derivative 𝑑𝑥/𝑑𝑡 is equal to a defining function 𝑓(𝑥, 𝑡),
like this: 𝑑𝑥

𝑑𝑡 = ̇𝑥 = 𝑓(𝑥, 𝑡)

The defining function may potentially depend on both the dependent variable 𝑥 and the
independent variable 𝑡. If it only depends on 𝑥, it is called an autonomous ODE, for example:

𝑑𝑥
𝑑𝑡 = ̇𝑥 = 𝑟𝑥

or

𝑑𝑥
𝑑𝑡 = ̇𝑥 = 5𝑥 − 4

On the other hand, if the defining function depends only on the independent variable 𝑡, it may
be called a pure-time ODE, for example:

𝑑𝑥
𝑑𝑡 = ̇𝑥 = 5𝑡

or

203

𝑑𝑥
𝑑𝑡 = ̇𝑥 = 20 − 0.3 sin(4𝜋𝑡)

An ODE is homogeneous if every term involves either the dependent variable 𝑥 or its derivative.
\end{mosdef} For instance, ̇𝑥 = 𝑥2 + sin(𝑥) is homogeneous, while ̇𝑥 = −𝑥 + 5𝑡 is not.
Most simple biological models that we will encounter in the next two chapters are autonomous,
homogeneous ODEs. However, nonhomogeneous equations are important in many applications,
and we will encounter them at the end of the present section.

11.1.1 separate and integrate method

Definition

The analytic (or exact) solution of an ordinary differential equation is a function of the
independent variable that satisfies the equation. If no initial value is given, then the
general solution function will contain an unknown integration constant. If an initial value
is specified, the integration constant can be found to obtain a specific solution.

This means that the solution function obeys the relationship between the derivative and the
defining function that is specified by the ODE. To verify that a function is a solution of a
given ODE, take its derivative and check whether it matches the other side of the equation.

Example. The function 𝑥(𝑡) = 3𝑡2 + 𝐶 is a general solution of the ODE ̇𝑥 = 6𝑡, which can
be verified by taking the derivative: ̇𝑥(𝑡) = 6𝑡. Since this matches the right-hand side of the
ODE, the solution is valid.

Example. The function 𝑥(𝑡) = 𝐶𝑒5𝑡 is a general solution of the ODE ̇𝑥 = 5𝑥. This can be
verified by the taking the derivative: ̇𝑥 = 5𝐶𝑒5𝑡 and comparing it with the right-hand side of
the ODE: 5𝑥 = 5𝐶𝑒5𝑡. Since the two sides of the equation agree, the solution is valid.

In contrast with algebraic equations, we cannot simply isolate 𝑥 on one side of the equal sign
and find the solutions as one, or a few numbers. Instead, solving ordinary differential equations
is very tricky, and no general strategy for solving an arbitrary ODE exists. Moreover, a solution
for an ODE is not guaranteed to exist at all, or not for all values of 𝑡. We will discuss some of
the difficulties later, but let us start with equations that we can solve.

The most obvious strategy for solving an ODE is integration. Since a differential equation
contains derivatives, integrating it can remove the derivative. In the case of the general first
order equation, we can integrate both sides to obtain the following:

∫ 𝑑𝑥
𝑑𝑡 𝑑𝑡 = ∫ 𝑓(𝑥, 𝑡)𝑑𝑡 ⇒ 𝑥(𝑡) + 𝐶 = ∫ 𝑓(𝑥, 𝑡)𝑑𝑡

204

The constant of integration 𝐶 appears as in the standard antiderivative definition. It can be
specified by an initial condition for the solution 𝑥(𝑡). Unless the function 𝑓(𝑥, 𝑡) depends only
on 𝑡, it is not possible to evaluate the integral above. Instead, various tricks are used to find
the analytic solution. The simplest method of analytic solution of a first-order ODEs, which
I call separate-and-integrate consists of the following steps:

1. use algebra to place the dependent and independent variables on different sides of the
equations, including the differentials (e.g. 𝑑𝑥 and 𝑑𝑡)

2. integrate both sides with respect to the different variables, don’t forget the integration
constant

3. solve for the dependent variable (e.g. 𝑥) to find the general solution
4. plug in 𝑡 = 0 and use the initial value 𝑥(0) to solve for the integration constant and find

the the specific solution

Example. Consider a very simple differential equation: ̇𝑥 = 𝑎, where ̇𝑥 stands for the time
derivative of the dependent variable 𝑥, and 𝑎 is a constant. It can be solved by integration:

∫ 𝑑𝑥
𝑑𝑡 𝑑𝑡 = ∫ 𝑎𝑑𝑡 ⇒ 𝑥(𝑡) + 𝐶 = 𝑎𝑡

This solution contains an undetermined integration constant; if an initial condition is specified,
we can determine the complete solution. Generally speaking, if the initial condition is 𝑥(0) =
𝑥0, we need to solve an algebraic equation to determine 𝐶: 𝑥0 = 𝑎 ∗ 0 − 𝐶, which results in
𝐶 = −𝑥0. The complete solution is then 𝑥(𝑡) = 𝑎𝑡 + 𝑥0. To make the example more specific,
if 𝑎 = 5 and the initial condition is 𝑥(0) = −3, the solution is

𝑥(𝑡) = 5𝑡 − 3

Example. Let us solve the linear population growth model in equation 10.1: ̇𝑥 = 𝑟𝑥. The
equation can be solved by first dividing both sides by 𝑥 and then integrating:

∫ 1
𝑥

𝑑𝑥
𝑑𝑡 𝑑𝑡 = ∫ 𝑑𝑥

𝑥 = ∫ 𝑟𝑑𝑡 ⟹ log |𝑥| = 𝑟𝑡 + 𝐶 ⟹ 𝑥 = 𝑒𝑟𝑡+𝐶 = 𝐴𝑒𝑟𝑡

We used basic algebra to solve for 𝑥, exponentiating both sides to get rid of the logarithm on the
left side. As a result, the additive constant 𝐶 gave rise to the multiplicative constant 𝐴 = 𝑒𝐶.
Once again, the solution contains a constant which can be determined by specifying an initial
condition 𝑥(0) = 𝑥0. In this case, the relationship is quite straightforward: 𝑥(0) = 𝐴𝑒0 = 𝐴.
Thus, the complete solution for equation 10.1 is:

𝑥(𝑡) = 𝑥0𝑒𝑟𝑡

205

11.1.2 behavior of solutions of linear ODEs

As in the case of the discrete-time models, population growth with a constant birth rate has
exponential form. Once again, please pause and consider this fact, because the exponential
solution of linear equations is one of the most basic and powerful tools in applied mathematics.
Immediately, it allows us to classify the behavior of linear ODE into three categories:

• 𝑟 > 0: 𝑥(𝑡) grows without bound
• 𝑟 < 0: 𝑥(𝑡) decays to 0
• 𝑟 = 0: 𝑥(𝑡) remains constant at the initial value

The rate 𝑟 being positive reflects the dominance of birth rate over death rate in the population,
leading to unlimited population growth. If the death rate is greater, the population will decline
and die out. If the two are exactly matched, the population size will remain unchanged.

Example. The solution for the biochemical kinetic model in equation 10.2 is identical except
for the sign: 𝐴(𝑡) = 𝐴0𝑒−𝑘𝑡. When the reaction rate 𝑘 is positive, as it is in chemistry, the
concentration of 𝐴 decays to 0 over time. This should be obvious from our model, since there
is no back reaction, and the only chemical process is conversion of 𝐴 into 𝐵. The concentration
of 𝐵 can be found by using the fact that the total concentration of molecules in the model is
conserved. Let us call it 𝐶. Then 𝐵(𝑡) = 𝐶 − 𝐴(𝑡) = 𝐶 − 𝐴0𝑒−𝑘𝑡. The concentration of 𝐵
increases to the asymptotic limit of 𝐶, meaning that all molecules of 𝐴 have been converted
to 𝐵.

11.1.3 solutions of nonhomogeneous ODEs

ODEs that contain at least one term without the dependent variable are a bit more complicated.
If the defining function is 𝑓(𝑥, 𝑡) is linear in the dependent variable 𝑥, they can be solved on
paper using the same separate-and-integrate method, modified slightly to handle the constant
term. Here are the steps to solve the generic linear ODE with a constant term ̇𝑥 = 𝑎𝑥 + 𝑏:

1. separate the dependent and independent variables on different sides of the equations, by
dividing both sides by the right hand side 𝑎𝑥 + 𝑏, and multiplying both sides by the
differential 𝑑𝑡

2. integrate both sides with respect to the different variables, don’t forget the integration
constant!

3. solve for the dependent variable (e.g. 𝑥)
4. plug in 𝑡 = 0 and use the initial value 𝑥(0) to solve for the integration constant

Example. Let us solve the following ODE model using separate and integrate with the given
initial value: 𝑑𝑥

𝑑𝑡 = 4𝑥 − 100; 𝑥(0) = 30

206

1. separate the dependent and independent variables:

𝑑𝑥
4𝑥 − 100 = 𝑑𝑡

2. integrate both sides:

∫ 𝑑𝑥
4𝑥 − 100 = ∫ 𝑑𝑡 ⇒ 1

4 ∫ 𝑑𝑢
𝑢 = 1

4 ln |4𝑥 − 100| = 𝑡 + 𝐶

The integration used the substitution of the new variable 𝑢 = 4𝑥 − 100, with the concur-
rent substitution of 𝑑𝑥 = 𝑑𝑢/4.

3. solve for the dependent variable:

ln |4𝑥 − 100| = 4𝑡 + 𝐶 ⇒ 4𝑥 − 100 = 𝑒4𝑡𝐵 ⇒ 𝑥 = 25 + 𝐵𝑒4𝑡

Here the first step was to multiply both sides by 4, and the second to use both sides as
the exponents of 𝑒, removing the natural log from the left hand side, and finally simple
algebra to solve for 𝑥 as a function of 𝑡.

4. solve for the integration constant:

𝑥(0) = 25 + 𝐵 = 30 ⇒ 𝐵 = 5

Here the exponential “disappeared’ ’ because 𝑒0 = 1. \end{enumerate} Therefore, the
complete solution of the ODE with the given initial value is

𝑥(𝑡) = 25 + 5𝑒4𝑡

At this point, you might have noticed something about solutions of linear ODEs: they always
involve an exponential term, with time in the exponent. Knowing this, it is possible to bypass
the whole process of separate-and-integrate by using the following short-cut.

Important fact: Any linear ODE of the form ̇𝑥 = 𝑎𝑥 + 𝑏 has an analytic solution of the
form:

𝑥(𝑡) = 𝐶𝑒𝑎𝑡 + 𝐷

This can be tested by plugging the solution back into the ODE to see if it satisfies the equation.
First, take the derivative of the solution to get the left-hand side of the ODE: 𝑑𝑥

𝑑𝑡 = 𝐶𝑎𝑒𝑎𝑡; the
plug in 𝑥(𝑡) into the right hand side of the ODE: 𝑎𝐶𝑒𝑎𝑡 + 𝑎𝐷 + 𝑏. Setting the two sides equal,
we get:

𝐶𝑎𝑒𝑎𝑡 = 𝑎𝐶𝑒𝑎𝑡 + 𝑎𝐷 + 𝑏
which is satisfied if 𝑎𝐷 + 𝑏 = 0, which means 𝐷 = −𝑏/𝑎. This is consistent with the example
above, the additive constant in the solution was 25, which is −𝑏/𝑎 = −(−100)/4 = 25.

207

In short, if you want to solve a linear ODE ̇𝑥 = 𝑎𝑥 + 𝑏 , you can bypass the separate-and-
integrate process, because the general solution always has the form:

𝑥(𝑡) = 𝐶𝑒𝑎𝑡 − 𝑏
𝑎 (11.1)

The unknown constant 𝐶 can be determined from a given initial value. So the upshot is that
all linear ODEs have solutions which are exponential in time with exponential constant coming
from the slope constant 𝑎 in the ODE. The dynamics of the solution are determined by the
sign of the constant 𝑎: if 𝑎 > 0, the solution grows (or declines) without bound; and if 𝑎 < 0,
the solution approaches an asymptote at −𝑏/𝑎 (from above or below, depending on the initial
value). Go back and read section 2.2 for a review of exponential functions if this is not clear.

11.1.4 Exercises

Solve the following linear ODEs and use the specified initial values to determine the integration
constant. Describe how the solution behaves over a long time (e.g. grows without bound, goes
to zero, etc.). Plug the solution back into the ODE to check that it satisfies the equation.

1. 𝑑𝑥
𝑑𝑡 = 0.1; 𝑥(0) = 100

2. 𝑑𝑥
𝑑𝑡 = 2 sin(4𝑡) − 0.4𝑡; 𝑥(0) = 5

3.
𝑑𝑥
𝑑𝑡 = 3𝑥; 𝑥(0) = 0.4

4. 𝑑𝑥
𝑑𝑡 = −5𝑥; 𝑥(0) = −300

5.
𝑑𝑥
𝑑𝑡 = −0.5𝑥 + 100; 𝑥(0) = 20

6.
𝑑𝑥
𝑑𝑡 = 1 + 𝑥; 𝑥(0) = 4

7.
𝑑𝑥
𝑑𝑡 = −10 − 0.2𝑥; 𝑥(0) = 10

8.
𝑑𝑥
𝑑𝑡 = −4 + 0.5𝑥; 𝑥(0) = 6

208

11.2 Numeric solutions and the Forward Euler method

Analytic solutions are very useful for a modeler because they allow prediction of the variable
of interest at any time in the future. However, for many differential equations they are not
easy to find, and for many others they simply cannot be written down in a symbolic form.
Instead, one can use a numerical approach, which does not require an exact formula for the
solution. The idea is to start at a given initial value (e.g. 𝑥(0)) and use the derivative from the
ODE (e.g. 𝑑𝑥/𝑑𝑡) as the rate of change of the solution (e.g. 𝑥(𝑡)) to calculate the change or
increment for the solution over a time step. Essentially, this means replacing the continuous
change of the derivative with a discrete time step, thus converting the differential equation
into a difference equation and then solving it. The solution of the difference equation is not
the same as the solution of the ODE, so numeric solutions of ODEs are always approximate.
I will use the letter 𝑦(𝑡) to denote the numerical solution to distinguish it from the exact
solution 𝑥(𝑡). The fundamental difference between them is that 𝑦(𝑡) is not a formula that can
be evaluated at any point in time, but instead is a sequence of numbers calculated every time
step, which hopefully are close to the exact solution 𝑥(𝑡).
Let us introduce all the players: first, we need to pick the time step Δ𝑡, which is the length
of time between successive values of 𝑦. In the difference equation notation one can use 𝑦𝑖 to
mean 𝑦(𝑖Δ𝑡), the value of the numerical solution after 𝑖 time steps. Then we need to calculate
the derivative, or the rate of change at a particular point in time. For any first-order ODE of
the form 𝑑𝑥

𝑑𝑡 = ̇𝑥 = 𝑓(𝑥, 𝑡)

the rate of change depends (potentially) on the values of 𝑥 and 𝑡. This rate of change based
on the numerical solution after 𝑖 time steps is 𝑓(𝑦(𝑖Δ𝑡), 𝑖Δ𝑡) = 𝑓(𝑦𝑖, 𝑡𝑖). Finally, to calculate
the change of the dependent variable we need to multiply the rate of change by the time step.
This should make sense in a practical context: if you drive for two hours (time step) at 60
miles per hour (rate of change), the total distance (increment) is 2 ∗ 60 = 120 miles. By the
same token, we can write down how to calculate the next value of the numerical solution 𝑦𝑖+1
based on the previous one:

𝑦𝑖+1 = 𝑦𝑖 + Δ𝑡𝑓(𝑦𝑖, 𝑡𝑖) (11.2)

This method of computing a numerical solution of an ODE is called the Forward Euler method,
after the famous mathematician who first came up with it. It is called a forward method
because it uses the value of the dependent variable and its derivative at time step 𝑖 to predict
the value at the next time step 𝑖 + 1. The method is iterative, so it needs to be repeated in
order to calculate a set of values of the approximate solution 𝑦(𝑡). Here are a couple of simple
examples of computing numerical solution using FE:

Example. Let us numerically solve the ODE ̇𝑥 = −0.1 using the Forward Euler method.
This means the defining function in the formulation of FE above is 𝑓(𝑥, 𝑡) = −0.1. We can
calculate the numeric solution for a couple of steps and compare the values with the exact

209

solution, since we now know that it is 𝑥(𝑡) = 𝑥0 − 0.1𝑡. Let us pick the time step Δ𝑡 = 0.2 and
begin with the initial value 𝑥(0) = 1. Here are the first three steps using the FE method:

𝑦(0.2) = 𝑦(0) + Δ𝑡𝑓(𝑦(0)) = 1 + 0.2 ∗ (−0.1) = 0.98

𝑦(0.4) = 𝑦(0.2) + Δ𝑡𝑓(𝑦(0.2)) = 0.98 + 0.2 ∗ (−0.1) = 0.96
𝑦(0.6) = 𝑦(0.4) + Δ𝑡𝑓(𝑦(0.4)) = 0.96 + 0.2 ∗ (−0.1) = 0.94

Since the rate of change in this ODE is constant, the solution declines by the same amount
every time step. In this case, the numerical solution is actually exact, and perfectly matches
the analytic solution. Table 11.2 (right) shows the numerical solution for 3 time steps along
with the exact solution.

Example. Let us numerically solve the ODE ̇𝑥 = −0.1𝑥 using the Forward Euler method.
This means the defining function in the formulation of FE above is 𝑓(𝑥, 𝑡) = −0.1𝑥. We can
calculate the numeric solution for a couple of steps and compare the values with the exact
solution, since we now know that it is 𝑥(𝑡) = 𝑥0𝑒−0.1𝑡. Let us pick the time step Δ𝑡 = 0.2 and
begin with the initial value 𝑥(0) = 100. Here are the first three steps using the FE method:

𝑦(0.2) = 𝑦(0) + Δ𝑡𝑓(𝑦(0)) = 100 + 0.2 ∗ (−0.1 ∗ 100) = 98

𝑦(0.4) = 𝑦(0.2) + Δ𝑡𝑓(𝑦(0.2)) = 98 + 0.2 ∗ (−0.1 ∗ 98)
= 96.04

𝑦(0.6) = 𝑦(0.4) + Δ𝑡𝑓(𝑦(0.4)) = 96.04 + 0.2 ∗ (−0.1 ∗ 96.04) ≈
≈ 94.12

In this case, the derivative is not constant and the numerical solution is not exact, which
is demonstrated in table 11.2 (left). The error in the numerical solution grows with time,
which may be problematic. We will further investigate how to implement the computation of
numerical solutions using R in the next section.

Table 11.1: Numerical solutions of the ODE ̇𝑥 = −0.1 using Forward Euler 𝑦 calculated for 3
steps of size Δ𝑡 = 0.2 as well as the exact solution 𝑥, both rounded to two digits
after the decimal, and the error of the numerical solution.

t x y error
0 1 1 0
0.2 0.98 0.98 0
0.4 0.96 0.96 0
0.6 0.94 0.94 0

210

Table 11.2: Numerical solution of the ODEs ̇𝑥 = −0.1𝑥 (right) using Forward Euler 𝑦 calcu-
lated for 3 steps of size Δ𝑡 = 0.2 as well as the exact solution 𝑥, both rounded to
two digits after the decimal, and the error of the numerical solution.

t x y error
0 100 100 0
0.2 98.02 98 0.02
0.4 96.08 96.04 0.04
0.6 94.18 94.12 0.06

11.2.1 Exercises

Use the Forward Euler method to solve the following differential equations with time step
Δ𝑡 = 0.5 for 2 steps to compute 𝑦(1) (the value of the numerical solution at 𝑡 = 1.)

1. 𝑑𝑥
𝑑𝑡 = 0.1; 𝑥(0) = 100

2. 𝑑𝑥
𝑑𝑡 = 2 sin(4𝑡) − 0.4𝑡; 𝑥(0) = 5

3.
𝑑𝑥
𝑑𝑡 = 3𝑥; 𝑥(0) = 0.4

4. 𝑑𝑥
𝑑𝑡 = −5𝑥; 𝑥(0) = −300

5.
𝑑𝑥
𝑑𝑡 = −0.5𝑥 + 100; 𝑥(0) = 20

6.
𝑑𝑥
𝑑𝑡 = 1 + 𝑥; 𝑥(0) = 4

7.
𝑑𝑥
𝑑𝑡 = −10 − 0.2𝑥; 𝑥(0) = 10

8.
𝑑𝑥
𝑑𝑡 = −4 + 0.5𝑥; 𝑥(0) = 6

211

11.3 Forward Euler method in R

11.3.1 implementation

In practice, the most common approach to finding solutions for differential equations is using
a computer to calculate a numerical solution, for example using the Forward Euler method.
This means using a computer program to construct a sequence of values of the dependent
variable that approximate the true solution. Below is an outline of the algorithm that can be
translated into a programming language, like R, to solve ODEs.

• assign the time step dt, length of time Tmax, number of time steps numstep

• pre-allocate the vector of numeric solution values y of length numstep+1

• assign the initial value for the ODE to the first element of the solution

• assign the vector of time values t from 0 to Tmax of length numstep+1

• for loop starting at 1 to numstep

– assign the next solution value to be the current solution value plus the time step
multiplied by the defining function at the current solution value

• plot numeric solution y as a function of time t

To implement the algorithm, one need to know the defining function 𝑓(𝑥, 𝑡), the initial value,
the time step, and the total time. The output is the solution vector 𝑦, which contains a
sequence of values that approximate the solution of the ODE, along with the vector of time
values spaced by the time step. Below is an example implementation of the Forward Euler
method for the following linear ODE with initial value 1000:

𝑑𝑥
𝑑𝑡 = −0.5𝑥

x0 <- 1000
dt <- 0.01 # set time step
Tmax <- 10 # set length of time
numstep <- Tmax/dt # assign number of time steps
pop <- rep(x0, numstep+1) # initialize solution with y0
for (i in 1:numstep) { # do the Euler!

pop[i+1] <- pop[i]+dt*(-0.5*pop[i])
}
time <- seq(0,Tmax, dt)
plot(time, pop, type='l')

212

0 2 4 6 8 10

0
40

0
80

0

time

po
p

Figure 11.1: ?(caption)

Notice that it is very similar to the script for numerical solution of a difference equation we
saw in ?? with the major difference being the presence of a time step, whereas in difference
equations the time step is always 1. There is one more important point for the implementation:
usually one needs to solve the ODE for a particular length of time 𝑇 with a specified time
step Δ𝑡 . This dictates that the required number of iterations be 𝑇 /Δ𝑡; in other words, for a
given time period the number of time steps is inversely proportional to the time step.

11.3.2 Exercises

Consider a slightly different linear ODE:

𝑑𝑥
𝑑𝑡 = 0.2𝑥

1. Calculate the numeric solution of the ODE for one time step using Forward Euler, for
time step dt=0.1, starting with initial value x(0) = 5. Answer: 5.1

YOUR CODE HERE

2. Write a script to solve the ODE using the Forward Euler method based on the outline
above. Set the time step dt=0.1 and report the solution after 100 time steps. Answer:
36.22323

YOUR CODE HERE

213

3. Change the time step to be dt=0.01 and report the solution after 1000 time steps.
Answer: 36.87156.

YOUR CODE HERE

11.3.3 error analysis

Numeric solutions of ODE are always approximate, because they use discrete time steps to
approximate continuous change (derivatives). Thus numeric solutions always have error, which
is the difference between the exact or analytic solution and the numeric solution. If we know
the exact solution of an ODE, we can calculate the error using vector subtraction in R. For
the same linear ODE we solved above:

𝑑𝑥
𝑑𝑡 = −0.5𝑥

The analytic solution is 𝑥(𝑡) = 𝑥0𝑒−0.5𝑡, where 𝑥0 is the initial value. Here is an example of
computing the numeric solution (as we did above) and then calculating the analytic solution
and plotting it:

x0 <- 1000
dt <- 0.5 # set time step
Tmax <- 10 # set length of time
numstep <- Tmax/dt # assign number of time steps
pop <- rep(x0, numstep+1) # initialize solution with y0
for (i in 1:numstep) { # do the Euler!

pop[i+1] <- pop[i]+dt*(-0.5*pop[i])
}
time <- seq(0,Tmax, dt)
plot(time, pop, type='l', main = "Numeric and analytic solutions of an ODE") # plot the numeric solution
exact <- x0*exp(-0.5*time) # calculate the exact solution
lines(time, exact, col = 'red') # plot the exact solution
legend('topright', col=c('black', 'red'), lty=1, legend = c('numeric', 'analytic'))

214

0 2 4 6 8 10

0
40

0
80

0

Numeric and analytic solutions of an ODE

time

po
p

numeric
analytic

Now we can calculate the error of the numeric solution and plot it:

error <- abs(exact - pop)
plot(time, error, type = 'l', main='Error of the numeric solution')

0 2 4 6 8 10

0
10

30
50

Error of the numeric solution

time

er
ro

r

What is the sources of this error? There are at least two distinct sources of error in numerical
solutions: a) roundoff error and b) truncation error. Roundoff error is caused by computers
representing real numbers by a finite string of bits on a computer using what is known as a

215

floating point representation. In many programming languages variables storing real numbers
can be single or double precision, which typically support 24 and 53 significant binary digits,
respectively. Any arithmetic operation involving floating point numbers is only approximate,
with an error that depends on the way the numbers are stored in the memory. Truncation error
is caused by approximations inherent in numerical algorithms, such as Forward Euler, which
represent instantaneous rate of change in an ODE with discrete steps and thus are always a
bit off from the true analytic solution.

In practice, roundoff error is not a big concern in contemporary computation for most modelers.
Truncation error, on the other hand, can cause big problems, but luckily it is within your
control. One can decrease the error in the case of finite difference methods by choosing smaller
time steps, or by choosing an algorithm with a higher order of accuracy, which we’ll leave for
a more advanced discussion.

Returning specifically to the Forward Euler method, it is called a first-order method because
the total error of the solution (after some number of time steps) depends linearly on the time
step Δ𝑡. One can show this by using the Taylor expansion of the solution 𝑦(𝑡) to derive the
forward Euler method, with 𝜏(Δ𝑡) representing the truncation error after one time step:

𝑦(𝑡 + Δ𝑡) = 𝑦(𝑡) + Δ𝑡𝑑𝑦(𝑡)
𝑑𝑡 + 𝜏(Δ𝑡)

As you might have learned in calculus, the error remaining after the linear term in the Taylor
series is proportional to the the square of the small deviation Δ𝑡. This only describes the error
after 1 time step, but since the errors accumulate every time step, the total error after 𝑁 time
steps accumulates 𝑁𝜏(Δ𝑡). As we saw in the implementation above, for a given length of time,
𝑁 is inversely proportional to Δ𝑡. Therefore, the total error is proportional to the Δ𝑡 and so
FE is a first-order method.

The exercise above shows that new errors in FE method accumulate in proportion with the
time step. The next question is, what happens to these errors over time? Do they grow or
dissipate with more iterations? This is known as the stability of a numerical method, and
unlike the above question about the order of accuracy, the answer depends on the particular
ODE that one needs to solve. Below I show an example of error analysis for a linear ODE:

Example. To numerically solve the equation ̇𝑥 = 𝑎𝑥, we substitute the function 𝑎𝑥 for the
function 𝑓(𝑥, 𝑡), and obtain the FE approximation for this particular ODE:

𝑦𝑖+1 = 𝑦𝑖 + Δ𝑡𝑎𝑦𝑖 = (1 + 𝑎Δ𝑡)𝑦𝑖

The big question is what happens to the truncation error: does it grow or decay? To investigate
this question, let us denote the error at time 𝑡𝑖 , that is the difference between the true solution
𝑥(𝑡𝑖) and the approximate solution 𝑦(𝑡𝑖), by 𝜖𝑖. It follows that 𝑦𝑖 = 𝑥𝑖 +𝜖𝑖. Then we can wrote
the following difference equations involving the error:

𝑦𝑖+1 = 𝑥𝑖+1 + 𝜖𝑖+1 = (𝑥𝑖 + 𝜖𝑖)(1 + 𝑎Δ𝑡) = 𝑥𝑖(1 + 𝑎Δ𝑡) + 𝜖𝑖(1 + 𝑎Δ𝑡)

216

Let us set aside the terns in the equation that involve 𝑥 (since it is just the equation for forward
Euler). The remaining difference equation for 𝜖 describes the change in the error:

𝜖𝑖+1 = 𝜖𝑖(1 + 𝑎Δ𝑡)

This states that the error in this numerical solution is repeatedly multiplied by the constant
(1 + 𝑎Δ𝑡). As we saw in section 9.2, this linear difference equation has an exponential solution
𝜖𝑛 = (1 + 𝑎Δ𝑡)𝑛𝜖0, which decays to 0 if |1 + 𝑎Δ𝑡| < 1 or grows without bound if |1 + 𝑎Δ𝑡| > 1.
The first inequality is called the stability condition for the FE scheme, since it guarantees that
the old errors decay over time. Since Δ𝑡 > 0, the only way that the left hand side can be less
than 1 is if 𝑎 < 0. Therefore, the condition for stability of the FE method for a linear ODE:

|1 + 𝑎Δ𝑡| < 1 ⇒ Δ𝑡 < −2/𝑎

Thus, if 𝑎 > 0, the errors will eventually overwhelm the solution. If 𝑎 < 0, if the time step is
small enough (less than −2/𝑎) then FE is stable. Generally speaking, however, Forward Euler
is about the worst method to use for practical numerical solutions of ODEs, due to its low
accuracy and to its lack of stability under certain conditions.

11.3.4 Exercises

𝑑𝑥
𝑑𝑡 = 0.2𝑥

1. Calculate the error of the numeric solution of this ODE after one time step with dt=0.1
and initial value x(0) = 5 by subtracting it from the exact (analytic) solution 𝑥(𝑡) =
𝑒0.2𝑡𝑥(0), with the same initial value. Answer: about 0.001.

YOUR CODE HERE

2. Compute the error of the two numeric solution over Tmax = 10 by subtracting the
numeric solution vector from the analytic solution calculating over the same time vector
and report the mean of that error vector. Answers: for dt=0.1 the mean error is 0.722,
for dt=0.01 the mean error is 0.0737.

YOUR CODE HERE

217

11.4 Applications of linear ODE models

11.4.1 model of pharmacokinetics

Describing and predicting the dynamics of drug concentration in the body is the goal of phar-
macokinetics. Any drug that humans take goes through several stages: first it is administered
(put into the body), then absorbed, metabolized (transformed), and excreted (removed from
the body) [?]. Almost any drug has a dose at which it has a toxic effect, and most can kill a
human if the dose is high enough. Drugs which are used for medical purposes have a therapeu-
tic range, which lies between the lowest possible concentration (usually measured in the blood
plasma) that achieves the therapeutic effect and the concentration which is toxic. One of the
basic questions that medical practitioners need to know is how much and how frequently to
administer a drug to maintain drug concentration in the therapeutic range.

The concentration of a drug is a dynamic variable which depends on the rates of several
processes, most directly on the rate of administration and the rate of metabolism. Drugs can
be administered through various means (e.g. orally or intravenously) which influences their
rate of absorption and thus how the concentration increases. Once in the blood plasma, drugs
are metabolized primarily by enzymes in the liver, converting drug molecules into compounds
that can be excreted through the kidneys or the large intestine. The process of *metabolism
proceeds at a rate that depends on both the concentration of the drug and on the enzyme that
catalyzes the reaction. For some drugs the metabolic rate may be constant, or independent of
the drug concentration, since the enzymes are already working at full capacity and can’t turn
over any more reactions, for example alcohol is metabolized at a constant rate of about 1 drink
per hours for most humans. Figure ??a shows the time plots of the blood alcohol concentration
for 4 males who ingested different amounts of alcohol, and the curves are essentially linear with
the same slope after the peak. For other drugs, if the plasma concentration is low enough,
the enzymes are not occupied all the time and increasing the drug concentration leads to
an increase in the rate of metabolism. One can see this behavior in the metabolism of the
anti-depressant drug bupropion in figure ??b, where the concentration curve shows a faster
decay rate for higher concentration of the drug than for lower concentration. In the simplest
case, the rate of metabolism is linear, or proportional to the concentration of the drug, with
proportionality constant called the first-order metabolic rate.

Let us build an ODE model for a simplified pharmacokinetics situation. Suppose that a drug
is administered at a constant rate of 𝑀 (concentration units per time unit) and that it is
metabolized at a rate proportional to its plasma concentration 𝐶 with metabolic rate constant
𝑘. Then the ODE model of the concentration of the drug over time 𝐶(𝑡) is:

𝑑𝐶
𝑑𝑡 = 𝑀 − 𝑘𝐶

The two rate constants 𝑀 and 𝑘 have different dimensions, which you should be able to
determine yourself. The ODE can be solved using the separate-and-integrate method:

218

Figure 11.2: Blood alcohol content after ingesting different numbers of drinks, from 4 in the
top curve to 1 in the bottom (figure from the National Institute on Alcohol Abuse
and Alcoholism in public domain)

219

Figure 11.3: Blood concentration of bupropion for two different drugs in clinical trials (image
by CMBJ based on FDA data under CC-BY 3.0 via Wikimedia Commons)

220

1. Divide both sides by the right hand side 𝑀 − 𝑘𝐶, and multiply both sides by the differ-
ential 𝑑𝑡

𝑑𝐶
𝑀 − 𝑘𝐶 = 𝑑𝑡

2. integrate both sides with respect to the different variables, don’t forget the integration
constant!

∫ 𝑑𝐶
𝑀 − 𝑘𝐶 = ∫ 𝑑𝑡 ⇒

−1
𝑘 log |𝑀 − 𝑘𝐶| = 𝑡 + 𝐴

3. solve for the dependent variable 𝐶(𝑡)

exp(log |𝑀 − 𝑘𝐶|) = − exp(𝑘𝑡 + 𝐴) ⇒

𝑀 − 𝑘𝐶 = 𝐵𝑒−𝑘𝑡 ⇒

𝐶(𝑡) = 𝑀
𝑘 − 𝐵𝑒−𝑘𝑡

Notice that I changed the values of integration constants 𝐴 and 𝐵 during the derivation,
which shouldn’t matter because they have not been determined yet.

4. plug in 𝑡 = 0 and use the initial value 𝑥(0) to solve for the integration constant If we
know the initial value 𝐶(0) = 𝐶0, then we can plug it in and get the following algebraic
expression:

𝐶0 = 𝑀
𝑘 − 𝐵 ⇒

𝐵 = 𝐶0 − 𝑀
𝑘

Then the complete solution is:

𝐶(𝑡) = 𝑀
𝑘 − (𝐶0 − 𝑀

𝑘)𝑒−𝑘𝑡

The solution predicts that after a long time the plasma concentration will approach the value
𝑀/𝑘, since the exponential term decays to zero. Notice that mathematically this is the same
type of solution we obtained in equation 11.1 for a generic linear ODE with a constant term.

11.4.2 Discussion questions

The following questions encourage you to think critically about the pharmacokinetic model
above.

1. Describe in words the dependence of the long-term plasma concentration of the drug on
the }parameters. Does this prediction make intuitive sense?

221

2. Explain in practical terms the assumption that the administration of the drug results
in a constant rate of growth of the concentration. Under what circumstances does this
match reality?

3. Explain in practical terms the assumption that the drug metabolism rate is proportional
to the plasma concentration. Under what circumstances does this match reality?

4. Discuss how you could modify the ODE model to describe other circumstances, or to
add other effects to it.

222

12 Markov models with discrete states

True, man is mortal, but that’s not the half of it. What’s worse is that he’s
sometimes suddenly mortal, that’s the trick!
– Mikhail Bulgakov, The Master and Margarita

Life is complex and often unpredictable. Molecules bump into each randomly due to thermal
motion; entire organisms either find food or become food themselves due to chance. Mathe-
matical probability supplies tools to model, analyze, and even predict the behavior of these
random processes. In this part of the book we will focus on living systems that can be de-
scribed as being in different categories called discrete states. Similar to the categorical random
variables that were described in chapters 8 and 10, these systems are not measured on a nu-
merical scale, but can be described by words. For example, ion channels are trans-membrane
proteins which can change their shape to allow or not allow the passage of ions. Thus, an ion
channel can be described as being in an open or a closed state, with transitions taking places
between those states with certain probabilities. These models with a few discrete states and
random transitions with specified probabilities are called Markov models. They are easy to
build and they provide a powerful framework for mathematical analysis. In this chapter you
will learn to do the following:

• write down the transition diagram and transition matrix of a discrete-state Markov
models

• understand the Markov property and its implications
• calculate the probability of a string of states based on transition probabilities
• simulate a Markov model by generating multiple state strings based on the transition

probabilities

12.1 Building Markov models

Consider the life cycle of a cell, which is illustrated in figure ??a. Cells are known to go
through phases in the cell cycle, which correspond to different molecules being synthesized
and different actions performed. The 𝑀 phase stands for mitosis, or cell division, which itself
can be divided into stages, and in between cell divisions, cells go through gap phases (𝐺1 and
𝐺2) and the 𝑆 phase, during which DNA replication occurs. Some cells, depending on their
environmental conditions, or type in multicellular organisms, can also get off the treadmill of
the cell cycle, and go into what is called “quiescence’ ’, or 𝐺0 phase, during which the cell leads

223

a quiet life. It can also come out of quiescence and replicate again. This suggests a simplified
description of the cell that exists either in state 𝑅 (actively replicating) or state 𝑄 (quiescent),
with transitions between the two states occurring randomly with some probabilities. These
kinds of models can be summarized graphically using transition diagrams. For example, the
QR model of the cell cycle with probability of transition from Q to R of 0.05 (per hour), and
the transition probability from R to Q of 0.1 (per hour) is described by the diagram shown in
figure ??b.

A very different example of a biological systems that can be naturally divided into states are ion
channels, mentioned above. For some of them the opening or closing is activated by the binding
of other molecules, like in the case of the nicotinic acetylcholine receptor (nAChR). When not
bound to acetylcholine (a small molecule that serves as a neurotransmitter) it remains closed,
but binding of acetylcholine enables it to change conformation and open, though it can also
be closed when bound to Ach. Figure ?? illustrates the three states of nAChR, along with a
transition diagram that depicts possible transitions. Notice the absence of any arrows between
states R and O, which reflects the fact that the ion channel cannot transition directly from
the resting (unbound) state to the open state, it must go through the bound-but-closed state
C.

12.2 Markov property

In finite-state Markov models like those introduced above, the independent variable (e.g. time)
advances in discrete steps, the length of which is defined by the problem. For example, in the
cell cycle model, an appropriate time step may be an hour, while for the ion channel mode,
a reasonable time step is a fraction of a second. In some bioinformatics models describing
a string of letters, the independence variable is position in the sequence and the step is one
letter. Changes from one state to another are called transitions, and they may only happen
over a step of the independent variable. The transitions occur randomly, so they cannot be
predicted, but we can describe the probability of transitions.

For example, we may state that the probability of transition from state Q to R in the cell cycle
model is 0.05 for each time step, and the probability of transition from R to Q is 0.1. This
means that 5 times of 100 (out of many trials) a quiescent cell will switch to replicating over
one time step, and 1 time out of 10 (out of many trials) a replicating cell will switch to the
quiescent state. Let us define these parameters properly:

Definition

Let 𝑋(𝑡) be the random variable in a discrete-time Markov model with finitely many
states at an arbitrary time 𝑡. The transition probability from state 𝑖 to state 𝑗 is denoted

224

Figure 12.1: Diagram of the cell cycle showing the replicating phases (𝑀 , 𝐺1, 𝑆, and 𝐺2) and
the quiescent phase 𝐺0 (“Cell Cycle” by Zephyris with modifications by Beao and
Histidine under CC-BY-SA-3.0 via Wikimedia commons)

225

Figure 12.2: Diagram of a model of the cell cycle with two states (Q and R) with transitions
between states shown as arrows labeled with transition probabilities.

𝑝𝑗𝑖 and is defined as the conditional probability:

𝑝𝑗𝑖 = 𝑃{𝑋(𝑡 + 1) = 𝑗|𝑋(𝑡) = 𝑖}

Let us unpack this definition. The transition probability is conditional on knowing the state
of the model (𝑖) is at the present time (𝑡) and gives us the probability of the model switching
to another state (𝑗, which can be the same as 𝑖) one time step later (𝑡 + 1). The transition
probability in this definition has no explicit dependence on time 𝑡, which is not necessarily
the case for all Markov models; I just chose to make this additional assumption, called time-
homogeneity, for simplicity. There are Markov models which are not time-homogeneous, but
we will not see them in this course.

Note that the transition from state 𝑖 to state 𝑗 is written as 𝑝𝑗𝑖. This is the convention that
I will use to conform to the conditional probability notation, and for another reason that will
be apparent in the next chapter. Unfortunately, there is no agreement in the field as to which
convention to use, and some textbooks and papers denote the same transition probability 𝑝𝑖𝑗.
I will strive to avoid confusion and remind you what 𝑝𝑗𝑖 stands for.

One funny thing that you might have noticed in that definition is that the transition probability
makes no mention of times before the present. We just brazenly assumed that the history of
the random variable before the present time 𝑡 does not matter! This is called the Markov
property and was first postulated by A.A. Markov in 1905. Here is the proper definition [?]:

226

Figure 12.3: Nicotinic acetylcholine receptor (nAChR) an ion channel which opens only when
bound to acetylcholine; conformation of the ion channel can be divided into three
states: resting (R), closed with Ach bound (C) and open (O) (“Chemically Gated
Channel” by Blausen.com under CC BY 3.0 via Wikimedia Commons)

227

Figure 12.4: Transition diagram for the nAchR ion channel illustrates possible transitions with
transition probabilities as parameters

Definition

A time-dependent random variable 𝑋(𝑡) has the Markov property if for all times 𝑡 and
for all 𝑛 < 𝑡, the following is true:

𝑃{𝑋(𝑡 + 1)|𝑋(𝑡); 𝑋(𝑛)} = 𝑃{𝑋(𝑡 + 1)|𝑋(𝑡)}

I did not specify the state of the random variable in the definition because it must be true
for all states in the model. Stated in words, this says that the probability distribution of the
random variable at the next time step, given its distribution at the current time is the same
whether any of its past states are known or not. Another way of stating it is that the state of
the random variable at the next time, given the state at the present time, is independent of
the past states.

If this seems like a really big assumption, you are right! The reason we assume this property
is because it makes calculations with these models much easier. As with any assumption, it
must be viewed critically for any given application. Does the cell really forget what state it
was in an hour ago? Does it matter whether an ion channel was open a microsecond ago for
its probability to open again? The answer to these questions is not always clear cut - there
is almost always some residual memory of past states in a real system. If that memory is not
very strong, then we can proceed with our Markov modeling. Otherwise, the models must be
made more sophisticated.

228

12.2.1 transition matrices

Let us return to our example of the cell cycle model with two transition probabilities given:
transition from Q to R 𝑝𝑅𝑄 = 0.05 and transition from R to Q 𝑝𝑄𝑅 = 0.1. We can calculate the
probability of a replicating cell remaining in the same state, and the probability of a quiescent
cell remaining in the same state, because they are complementary events:

𝑝𝑄𝑄 = 1 − 𝑝𝑅𝑄 = 0.95; 𝑝𝑅𝑅 = 1 − 𝑝𝑄𝑅 = 0.9

In other words, a quiescent cell either becomes replicating over one time step or remains
quiescent, so the two probabilities must add up to 1. The same reasoning applies to the
replicating cell. We now have all of the parameters of the model, and there is a convenient
way of organizing them in one object.

Definition

The transition matrix for a discrete-time Markov model with 𝑁 states is an 𝑁 by 𝑁
matrix, which has the transition probabilities 𝑝𝑖𝑗 as its elements in the 𝑖-th row and 𝑗-th
column.

By convention, the rows in matrices are counted from top to bottom, while the columns are
counted left to right. The transition matrix is a square matrix consisting of all of the transition
probabilities of a given Markov model. It is, in essence, what defines a Markov model because
the transition probabilities are its parameters.

Example. For the cell cycle model in figure ?? the transition matrix is:

𝑀 = (0.95 0.1
0.05 0.9)

In order to write it down, we have to put the states in order; in this case I chose Q to be state
number 1, and R to be state number 2. This is entirely arbitrary, but must be specified in order
for the matrix to have meaning. Notice that the probabilities of staying in a state are on the
diagonal of the matrix, where the row and the column number are the same. The probability
of transition from state 1 (Q) to state 2 (R) is in column 1, row 2, and the probability of
transition from state 2 (R) to state 1 (Q) is in column 2, row 1.

Example. For the three-state model of the nAChR ion channel in figure ?? the transition
matrix is:

𝑀 = ⎛⎜
⎝

1 − 𝛼 𝛽 0
𝛼 1 − 𝛽 − 𝛾 𝛿
0 𝛾 1 − 𝛿

⎞⎟
⎠

229

The matrix is for states R, C, and O placed in that order. Notice that the transition probability
between R and O and vice versa is zero, in accordance with the transition diagram. The
probability of remaining in each state is 1 minus the sum of all the transition probabilities of
exiting that state; for example for state 2 (C) the probability of remaining is 1 − 𝛽 − 𝛾.

12.2.2 probability of a string of states

Knowing the parameters of the model gives us the tools to make probabilistic calculations.
The simplest task is to find the probability of occurrence of a given string of states. For
instance, for the cell cycle model, suppose we know that a cell is initially quiescent, what is
the probability that it remains quiescent for two hours? The probability of the cell remaining
quiescent for one time step is 𝑝𝑄𝑄 = 0.95, and the probability of it remaining quiescent for one
more time step is also 𝑝𝑄𝑄. Due to the Markov property, the two transitions are independent
of each other, so the probabilities can be multiplied, due to the multiplicative property of
independent events, to give the answer: 𝑃{𝑄𝑄𝑄} = 0.95 × 0.95 = 0.9025.
The magic of Markov property allows us to calculate the probability of any string of states,
given the initial state, as the product of transition probabilities. We can write this formally
as follows: for a string of states 𝑆 = {𝑥1, 𝑥2, 𝑥3, ..., 𝑥𝑇 −1, 𝑥𝑇 }, where 𝑥𝑡 represents the state at
time 𝑡, the probability of this string, given that 𝑃(𝑥1) = 1 is

𝑃(𝑆) = 𝑝𝑥2𝑥1
𝑝𝑥3𝑥2

...𝑝𝑥𝑇 𝑥𝑇−1
= 𝑝𝑥𝑇 𝑥𝑇−1

...𝑝𝑥3𝑥2
𝑝𝑥2𝑥1

The ellipsis represents all the intermediate transitions from state 𝑥3 to state 𝑥𝑇 −1. I also showed
that by reversing the order of multiplication, which is allowed because of commutativity, makes
the order of states proceed more clearly.

Example. Let us calculate the probability of another string of states based on the the cell
cycle model in figure ??. The probability that a cell is initially in state R, then transitions to
state Q and remains in state Q is a product of the transition probability from R to Q and the
transition probability from Q to Q:

𝑃{𝑅𝑄𝑄} = 0.1 × 0.95 = 0.095

Notice that there is no transition probability for the first state, since it must be specified as
an initial condition, just like in the dynamic models we saw in chapters 5 through 7.

Example. Let us calculate the probability of a string of states based the three-state model of
the nAChR ion channel in figure ??. The probability that an ion channel is initially in state
R, remains in that state for 5 steps, then transitions to state C, remains there for 3 steps, then
transitions to state O is:

230

𝑃{𝑅𝑅𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶𝑂} = (1 − 𝛼)5𝛼(1 − 𝛽 − 𝛾)3𝛾

12.2.3 Exercises

For the following Markov models a) draw the transition diagram, if one is not provided; b) put
the states in (some) order and write down the transition matrix; c) calculate the probability
of the given strings of states, taking the first state as given (e.g. for a string of 3 states, there
are only 2 transitions.)

1. Use the transition diagram in figure ??a (Model 1) to calculate the probability of the
string of states BAB.

2. Use the transition diagram in figure ??b (Model 2) to calculate the probability of the
string of states CCD.

3. Use the transition diagram in figure ??c (Model 3) to calculate the probability of the
string of states EEF.

4. Use the transition diagram in figure ??d (Model 4) to calculate the probability of the
string of states GGG.

5. An ion channel can be in either open (O) or closed (C) states. If it is open, then it has
probability 0.1 of closing in 1 microsecond; if closed, it has probability 0.3 of opening in
1 microsecond. Calculate the probability of the ion channel going through the following
sequence of states: COO.

231

6. An individual can be either susceptible (S) or infected (I), the probability of infection
for a susceptible person is 0.05 per day, and the probability an infected person becoming
susceptible is 0.12 per day. Calculate the probability of a person going through the
following string of states: SISI.

7. The genotype of an organism can be either normal (wild type, W) or mutant (M). Each
generation, a wild type individual has probability 0.03 of having a mutant offspring, and
a mutant has probability 0.005 of having a wild type offspring. Calculate the probability
of a string of the following genotypes in successive generations: WWWW.

8. There are three kinds of vegetation in an ecosystem: grass (G), shrubs (S), and trees (T)
[?]. Every year, 25% of grassland plots are converted to shrubs, 20% of shrub plots are
converted to trees, 8% of trees are converted to shrubs, and 1% of trees are converted to
grass; the other transition probabilities are 0. Calculate the probability of a plot of land
have the following succession of vegetation from year to year: GSGG.

9. The nAChR ion channel can be in one of three states: resting (R), closed with Ach bound
(C), and open (O) with transition probabilities (per one microsecond): 0.04 (from R to
C), 0.07 (from C to R), 0.12 (from C to O) and 0.02 (from O to C); the other transition
probabilities are 0. Calculate the probability of the following string of states: OCCR.

10. (Challenging) We considered a sequence of Bernoulli trials in chapter 4, for example
a string of coin tosses where each time heads and tails come up with probability 0.5.
Describe this experiment as a Markov model, draw its transition diagram and write its
transition matrix.

11. (Challenging) Now do the same for a sequence of Bernoulli trials where success has
probability 0.9 (and failure has probability 0.1).

12. (Challenging) Can you formulate a test, based on a transition matrix of a Markov model,
to tell whether it’s generating a string of independent random variables as opposed to a
string of random variables that depend on the previous one?

12.3 Markov models of medical treatment

Markov models are used across many biological fields. One example is the representation
of disease and patient treatment using discrete states with random transitions. The states
may describe the progression of the disease, the prior health and socioeconomic status of the
patient, the treatment the patient is undergoing, anything that is relevant for the medical
situation. Some models are very simple, for example a model of stroke patients that describes
them either as well, experiencing stroke, disables, or dead [?]. Others use tens or hundreds of
states, to better capture all the details without. One can then ask the question: what course
of treatment is likely to lead to the best outcome? Notice that there can be no certainty in this
answer, since the model is fundamentally random. In order to evaluate different treatments,

232

one can run simulations of the different models and compare the statistics generated by multiple
simulations of each model.

Figure 12.5: Simple Markov model of the states of patients at risk for stroke; figure from [?]

For example, figure ?? from [?] shows a four-state Markov model used to represent patients
at risk for stroke. Three of the four states (well, disabled, and dead) have nonzero probability
of remaining in the same state for more than one time step, and in particular the death state
is permanent, so no transitions out of it are allowed. On the other hand, the stroke state does
not allow for “self-transition” since it is a fast event, either resulting in full recovery, disability,
or death. In order for such models to be useful, one needs to obtain data on numerous patients
documenting all possible transition events, and to estimate the transition probabilities based
on the observed frequencies of their respective occurrences.

A more realistic example comes from a recent study of the cost-effectiveness of different treat-
ment protocols for HIV patients in South Africa [?]. Physicians and public health officials have
to consider both the costs and the efficacy of medical procedures, and it is a difficult challenge
to balance the two, with human health and lives at stake. The authors built a model that
includes stages of the disease, determined by viral loads and treatment options. The authors
used data from two different clinics, a public and a private one, to estimate the transition prob-
abilities and outcomes of treatments, and the costs of clinic visits and the therapies. They
then simulated the models to compare the predicted costs and outcomes, and found that while
the outcomes in the two treatment protocols were similar, the costs in the private clinics were
considerably lower.

233

Figure 12.6: Transition diagram for a model of HIV disease and treatment from [?] (under
CC-BY license)

234

12.3.1 Discussion questions

You are invited to read the paper “A Novel Markov Model Projecting Costs and Outcomes of
Providing Antiretroviral Therapy to Public Patients in Private Practices versus Public Clinics
in South Africa” and then use the following questions for discussion with your colleagues and
friends.

1. What does the Markov property mean for this model? How realistic do you think it is
for actual patients?

2. What are some other assumptions the authors make? Are they reasonable from a medical
standpoint?

3. The model predicts that private clinics which save costs are equally effective to private
clinics with greater numbers of visits. Would you be comfortable recommending patients
use only use private clinics based on this prediction?

235

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0053570
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0053570
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0053570

13 Probability distributions of Markov chains

I had the most rare of feelings, the sense that the world, so consistently overwhelm-
ing and incomprehensible, in fact had an order, oblique as it may seem, and I a
place within it. – Nicole Krauss, Great House

In the last chapter we learned to describe randomly changing biological systems using discrete-
state Markov models. These models are defined by a list of states and the transition prob-
abilities between the states, which are organized into a transition matrix. The models are
fundamentally stochastic and thus unpredictable, but they can be simulated on a computer
using random number generators to produce multiple strings of states. From them one can
calculate various statistical properties, such as means or variances of random variables that
depend on these states. However, performing endless simulations can be computationally ex-
pensive. It is much more efficient to predict the probability distribution of the model at any
given time without performing random simulations. The mathematical framework of matrices
and vectors and algebraic operations on them allow this prediction. Here is what you will
learn to do in this chapter:

• write down a probability distribution vector for a Markov model
• given a probability distribution vector at a particular time, calculate the probability

distribution one (or a few) time steps into the future
• multiply matrices and vectors
• use R scripts to calculate the probability distribution any number of time steps in the

future

13.1 Probability distribution vectors

Consider a two-state Markov model }with a given transition matrix and a specified initial
state. After one time step, the variable can be in either of two states - this can be simulated in
R using a random number generator and a conditional statement. There are only two possible
options: either the variable stays in the original state, or transitions from the original state
to the other one. For the cell cycle model introduced in the last chapter, with initial state
Q, the state space of this experiment contains two state strings: {𝑄𝑄, 𝑄𝑅}. After two time
steps, there are now four possible paths. For the cell cycle model with initial state 𝑄, the state
space is {𝑄𝑄𝑄, 𝑄𝑅𝑄, 𝑄𝑅𝑅, 𝑄𝑄𝑅}. Based on the calculation of probabilities of a given state

236

that we learned in the last chapter, we can find the probability of each of the paths and then
calculate the probability of the cell being in the replicating state after two time steps.

Let us make the problem a bit more general: take a two-state Markov model with a given
transition matrix and a specified initial probability distribution, instead of a single state. In
the cell cycle model, let the initial probability of 𝑄 be 𝑄0 and the initial probability of 𝑅
be 𝑅0. Then the event of the cell being in state 𝑄 after 1 time step is a combination of two
different state strings: {𝑄𝑄, 𝑅𝑄} and the probability of that event is the sum of those two
probabilities:

𝑃(𝑋(1) = 𝑄) = 𝑝𝑄𝑅𝑅0 + 𝑝𝑄𝑄𝑄0

Similarly, the event of the cell being in state 𝑅 is a sum of the probabilities of the state strings
{𝑄𝑅, 𝑅𝑅}:

𝑃(𝑋(1) = 𝑅) = 𝑝𝑅𝑄𝑄0 + 𝑝𝑅𝑅𝑅0

These calculations are shown in figure ??, starting with all the probability in state Q at t=0,
then calculating the new probability distribution at time t=1, then using the same transition
probabilities to calculate the new distribution at t=2.

Figure 13.1: Transition probabilities used to calculate the evolution of probability in the QR
model for two time steps

The calculations are easy for a couple of time steps, but imagine having to do this for ten time
steps, or a hundred - you would need to deal with thousands, or in the second case, about 1030

different state strings! One may use R to run a simulations for many different state strings
and plot their histograms (which we will do in section ?? in the next chapter). However, it is
far more efficient to compute the probability of a cell being in a particular state at a particular
time, that is, its probability distribution vector.

237

13.1.1 Markov chains

While sometimes simulation of multiple random processes is necessary, it can get expensive.
Probability offers us a theoretical way to make predictions for a Markov model, based on the
notion of a probability distribution vector. First, let us define a few terms: a Markov chain is
the mathematical manifestation of a Markov model. It was dubbed a chain because it consists
of a string of linked random variables, the probability of each dependent on the previous one,
and generating the next one.

Definition

A Markov chain is a sequence of random variables 𝑋(𝑡), where 𝑡 is time, and 𝑋(𝑡) can be
in one of 𝑛 states. Each random variable 𝑋(𝑡) has an associated probability distribution
vector ⃗𝑃 (𝑡), in which the 𝑖 − 𝑡ℎ element contains the probability of the random variable
being in the 𝑖−𝑡ℎ state, and ⃗𝑃 (𝑡) depends on ⃗𝑃 (𝑡−1) according to the Markov property.

Example. The model of ion channels introduced in the last chapter in figure ?? has three
states: resting, closed, and open. A Markov chain for this model consists of a string of random
variables that can take on states 𝑅, 𝐶, 𝑂, which can be indexed by corresponding integers 1, 2,
3. For each time step 𝑡, the random variable 𝑋(𝑡) has a probability vector with three elements:

⃗𝑃 (𝑡) = (𝑃1(𝑡), 𝑃2(𝑡), 𝑃3(𝑡)). Each element represents the probability of the corresponding state
at the time, e.g. 𝑃3(20) is the probability of the ion channel being in state 3 (𝑂) at time 20.

To generate a Markov chain with their associated probability distribution vectors, one needs
to know the initial state or distribution. For example, if initially the ion channel model is
in state 𝐶, the probability of the ion channel being in state 𝑅 after 2 time step is different
than if the initial state were 𝑅. Given an initial probability distribution, we will calculate the
probability distribution at the next time step, and then recursively generate the entire Markov
chain.

The law of total probability, which we encountered in section 8.2, allows us to calculate the
probability distribution of the Markov random variable at any time step, given its probability
distribution at the previous time step. Here is the general formula for a Markov model with
𝑁 states:

𝑃 (𝑋(𝑡 + 1) = 𝑖) =
𝑁

∑
𝑗=1

𝑃(𝑋(𝑡 + 1) = 𝑖|𝑋(𝑡) = 𝑗)𝑃 (𝑋(𝑡) = 𝑗) =
𝑁

∑
𝑗=1

𝑝𝑖𝑗𝑃(𝑋(𝑡) = 𝑗)

Here 𝑃(𝑋(𝑡) = 𝑗) is the probability of the random variable being in some state 𝑗 at time 𝑡, 𝑝𝑖𝑗
are the transition probabilities, and the sum adds up all the possible transitions into state 𝑖.
This equation can be written down for every state 𝑖 at the next time step 𝑡 + 1, so we have 𝑁
equations, each one adding up 𝑁 terms. For a 2 by 2 model, this is not too daunting:

𝑃(𝑋(𝑡 + 1) = 𝑄) = 𝑝𝑄𝑄𝑃(𝑋(𝑡) = 𝑄) + 𝑝𝑄𝑅𝑃(𝑋(𝑡) = 𝑅)

238

𝑃(𝑋(𝑡 + 1) = 𝑅) = 𝑝𝑅𝑄𝑃(𝑋(𝑡) = 𝑄) + 𝑝𝑅𝑅𝑃(𝑋(𝑡) = 𝑅)

This gives us a predictive formula for the probability distribution of a Markov random variable
at the next time point, given its current probability distribution. Notice that all four of the
transition probabilities are used in the system of equations, and that they are arranged in the
same way that I defined them in the transition matrix. This leads to a great simplification
using matrices and vectors.

13.2 matrix multiplication

Now is a good time to properly define what matrices are and how we can operate on them.
We have already seen transition matrices, but just to make sure all of the terms are clear:

Definition

A matrix 𝐴 is a rectangular array of elements 𝐴𝑖𝑗, in which 𝑖 denotes the row number
(index), counted from top to bottom, and 𝑗 denotes the column number (index), counted
from left to right.
The dimensions of a matrix are defined by the number of rows and columns, so an n by
m matrix contains 𝑛 rows and 𝑚 columns.

Elements of a matrix are not all created equal, they are divided into two types:

Definition

The elements of a matrix 𝐴 which have the same row and column index, e.g. 𝐴33 are
called the diagonal elements. Those which do not lie on the diagonal are called the
off-diagonal elements.

For instance, in the 3 by 3 matrix below, the elements 𝑎, 𝑒, 𝑖 are the diagonal elements:

𝐴 = ⎛⎜
⎝

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

⎞⎟
⎠

Matrices can be added together if they have the same dimensions. Then matrix addition is
defined simply as adding up corresponding elements, for instance the element in the second
row and first column of matrix 𝐴 is added with the element in the second row and first column
of matrix 𝐵 to give the element in the second row and first column of matrix 𝐶. Recall from
the previous chapter that rows in matrices are counted from top to bottom, while the columns
are counted left to right.

239

Matrices can also be multiplied, but this operation is trickier. For mathematical reasons,
multiplication of matrices 𝐴 × 𝐵 does not mean multiplying corresponding elements. Instead,
the definition seeks to capture the calculation of simultaneous equations, like the one in the
previous section. Here is the definition of matrix multiplication, in words and in a formula
[?]:

Definition

The product of matrices 𝐴 and 𝐵 is defined to be a matrix 𝐶, whose element 𝑐𝑖𝑗 is the
dot product of the i-th row of 𝐴 and the j-th column of 𝐵:

𝑐𝑖𝑗 = 𝑎𝑖1𝑏1𝑗 + 𝑎𝑖2𝑏2𝑗 + ... + 𝑎𝑖𝑁𝑏𝑁𝑗 =
𝑞

∑
𝑘=1

𝑎𝑖𝑘𝑏𝑘𝑗

This definition is possible only if the length of the rows of 𝐴 and the length of columns of
𝐵 are the same, since we cannot compute the dot product of two vectors of different lengths.
Matrix multiplication is defined only if 𝐴 is 𝑛 by 𝑞 and 𝐵 is 𝑞 by 𝑚, for any integers 𝑛, 𝑞,
and 𝑚 and the resulting matrix 𝐶 is a matrix with 𝑛 rows and 𝑚 columns, as shown in figure
??. In other words, the inner dimensions of matrices must match in order for matrix
multiplication to be possible.

Example. Let us multiply two matrices to illustrate how it’s done. Here both matrices are 2
by 2, so their inner dimensions match and the resulting matrix is 2 by 2 as well:

(1 3
6 1) × (4 1

5 −1) = (1 × 4 + 3 × 5 1 × 1 + 3 × (−1)
6 × 4 + 1 × 5 6 × 1 + 1 × (−1)) =

= (19 −2
29 5)

One important consequence of this definition is that matrix multiplication is not commutative.
If you switch the order, e.g. 𝐵 × 𝐴, the resulting multiplication requires dot products of the
rows of 𝐵 by the columns of 𝐴, and except in very special circumstances, they are not the
same. In fact, unless 𝑚 and 𝑛 are the same integer, the product of 𝐵 × 𝐴 may not be defined
at all.

We usually think of vectors as an ordered collection of numbers, but they can also be thought
of as matrices, albeit very skinny ones. A column vector is a matrix that has only one column,
and a row vector is a matrix with only one row. Even if a column vector and a row vector
contain the same numbers in the same order, they are different matrices, because they function
differently when multiplied. When multiplying an 𝑛 by 𝑚 matrix and a vector, one can multiply
with the vector on the left, or on the right, depending on the type of vector: if it is a column
vector, it must be on the right side of the matrix, while a row vector is multiplied on the left.
Since the inner dimensions have to match, an 𝑛 by 𝑚 matrix can be multiplied by a 𝑚 by 1
column vector on the right, or by a 1 by 𝑛 row vector on the left.

240

Figure 13.2: Illustration of the matrix product 𝐴 × 𝐵 = C. The dot product of the 𝑖-th row of
matrix 𝐴 and the 𝑗-th column of matrix 𝐵 produces the element 𝑐𝑖𝑗 in the 𝑖-the
row and the 𝑗-th column of 𝐶 (“Matrix multiplication” based on figure by Alain
Matthes via (http://texample.net) under CC-BY 2.5)

241

The rules of matrix multiplication may seem annoyingly baroque, but you will see the payoff
in simplification of our Markov calculations.

13.2.1 Exercises

For the following pairs of matrices determine whether matrix multiplication is valid for 𝐴 × 𝐵
and 𝐵 × 𝐴, and for the valid cases indicate the dimension of the resulting matrix.

1.

𝐴 = (1
3) ; 𝐵 = ⎛⎜

⎝

4 1
5 1
6 1

⎞⎟
⎠

2.

𝐴 = ⎛⎜
⎝

1 −2 1
−2 1 −2
1 −2 1

⎞⎟
⎠

; 𝐵 = (4 5 6
−6 −5 −4)

3.
𝐴 = (2 −1

−3 1) ; 𝐵 = (−1 −1
−3 −2)

4.

𝐴 = ⎛⎜
⎝

1 −2 1
−2 1 −2
1 −2 1

⎞⎟
⎠

; 𝐵 = (−1 −1
−3 −2)

5.

𝐴 = ⎛⎜
⎝

1
4

−2
⎞⎟
⎠

; 𝐵 = ⎛⎜
⎝

−1 −1 10
−3 −2 0
0 −1 −7

⎞⎟
⎠

6.

𝐴 = (−1 2 −9) ; 𝐵 = ⎛⎜
⎝

−4 −8
5 2

−6 10
⎞⎟
⎠

242

13.2.2 propagation of probability vectors

To calculate the probability of states in the future, we need to start with an initial probability
distribution - let us call it 𝑃(0). To advance it by one time step, multiply it by the transition
matrix, and obtain the probability distribution at 𝑃(1). To calculate the probability distribu-
tion after two time steps, multiply the distribution vector 𝑃(1) by the transition matrix and
obtain the vector 𝑃 (2).
Example. Take the case of the cell cycle model where the cell is initially in the quiescent
state, the vector propagation looks as follows:

𝑃(1) = 𝑀 × 𝑃(0) = (0.95 0.1
0.05 0.9) (1

0) = (0.95
0.05)

The Markov property allows us to calculate the probability distribution at the next step (𝑡+1)
given the distribution at the current step (𝑡). This means to find the distribution of the cell
cycle model after two time steps, we multiply the present distribution vector by the matrix
𝑀 :

𝑃(2) = 𝑀 × 𝑃(1) = (0.95 0.1
0.05 0.9) (0.95

0.05) = (0.9075
0.0925)

One can calculate the probability distribution vectors for as many time steps as needed by
repeatedly multiplying the current probability distribution vector by the transition matrix.
The general formula for the probability distribution of a Markov chain at any time 𝑡 is:

𝑃(𝑡) = 𝑀 × 𝑃(𝑡 − 1) = 𝑀 𝑡 × 𝑃(0)

which may be expressed in terms of repeated matrix multiplications (or matrix 𝑀 raised to
the power 𝑡) of the initial distribution vector 𝑃(0). This shows that in order to predict the
distribution in the future, we need to know only two things: the initial distribution and the
transition matrix of the Markov model.

13.2.3 Exercises

Use the transition matrices you constructed for these models in the previous chapter to calcu-
late the probability distribution for two time steps into the future.

243

1. Use the model in the transition diagram in figure ??a (Model 1). If initially the model is
in state A, what is the probability it is in state B after 1 time step? after 2 time steps?

2. Use the model in the transition diagram in figure ??b (Model 2). If initially the model is
in state C, what is the probability it is in state D after 1 time step? after 2 time steps?

3. Use the model in the transition diagram in figure ??c (Model 3). If initially the model is
in state E, what is the probability it is in state F after 1 time step? after 2 time steps?

4. Use the model in the transition diagram in figure ??d (Model 4). If initially the model is
in state H, what is the probability it is in state G after 1 time step? after 2 time steps?

5. An ion channel can be in either open or closed states. If it is open, then it has probability
0.1 of closing in 1 microsecond; if closed, it has probability 0.3 of opening in 1 microsecond.
Suppose that initially 50% of ion channels are open and 50% are closed. What fraction
is open after 1 microsecond? after 2 microseconds?

6. An individual can be either susceptible or infected, the probability of infection for a
susceptible person is 0.05 per day, and the probability an infected person becoming
susceptible is 0.12 per day. Suppose that initially the population is 90% susceptible and
10% infected. What fraction is susceptible after 1 day? after 2 days?

7. The genotype of an organism can be either normal (wild type) or mutant. Each gener-
ation, a wild type individual has probability 0.03 of having a mutant offspring, and a
mutant has probability 0.005 of having a wild type offspring. Suppose that initially 0.9
of the population is wild type and 0.1 is mutant. What fraction of the population is wild
type after 1 generation? After 2 generations?

244

8. The nAChR ion channel can be in one of three states: resting (R), closed with Ach bound
(C), and open (O) with transition probabilities (per one microsecond): 0.04 (from R to
C), 0.07 (from C to R), 0.12 (from C to O) and 0.02 (from O to C); the other transition
probabilities are 0. Suppose that initially 3/4 of ion channels are in R and 1/4 are in C.
What fraction of the ion channels is open after 1 microsecond? After 2 microseconds?

9. There are three kinds of vegetation in an ecosystem: grass, shrubs, and trees. Every
year, 25% of grassland plots are converted to shrubs, 20% of shrub plots are converted
to trees, 8% of trees are converted to shrubs, and 1% of trees are converted to grass; the
other transition probabilities are 0. Suppose that initially the ecosystem is evenly split:
1/3 grass, 1/3 shrubs and 1/3 trees. What fraction of ecosystem is covered in shrubs
after 1 year? after 2 years?

13.3 Mutations and molecular evolution

Think of a genetic sequence (either of nucleotides or amino acids) evolving over many gener-
ations. Once in a while, a mutation will change one of the letters in the sequence; the most
common mutations, as we discussed in chapter 3, are substitutions. Although each position
can contain multiple letters (4 for DNA, 20 for amino acids), let us simplify the question as
follows: if we know the ancestral sequence, what fraction of the sequence is unchanged after
a given number of generations? To answer this question we only need two states to describe
each position in the sequence: ancestral (A) and mutant (M). The transition probability from
A to M is the substitution mutation rate, which has units of mutations per nucleotide per
generation. The transition probability from M to A is the rate of reversion to ancestral state,
which is reasonably assumed to be less than the overall mutation rate, since for DNA there
are three options for mutation from an ancestral letter, but only one option for reversion (only
one ancestral letter). Thus, under the simple assumption that all substitution mutations are
equally probable, we can postulate that for a mutation rate 𝑎, the reversion rate is 𝑎/3.
Figure ?? shows the evolution of probability vectors for this model for two different values of
mutation rate 𝑎. In both calculations initially 100% of the sequence is made up of ancestral
letters, and then some fraction acquires mutations. Not surprisingly, if the mutation rate is
greater, mutations are acquired faster and the fraction of ancestral letter declines faster: in
the plot on the left (𝑎 = 0.0001) more than 90% of the sequence is indistinguishable from the
ancestor after 1000 generations, and in the plot on the right (𝑎 = 0.001) less than half remains
in the ancestral state after the same time passed. This model is a simplification of the famous
Jukes-Cantor model of molecular evolution, which we will investigate in section ??, where we
will use it to predict the time of divergence of two sequences from a common ancestor.

13.3.1 Discussion questions

These questions refer to the two-state Jukes-Cantor model presented above.

245

0 625 1625 2625 3625 4625

number of generations

pr
ob

ab
ili

ty

0.
0

0.
4

0.
8

Figure 13.3: The fraction of the sequence identical to ancestral after a certain number of gen-
erations, for two different mutation rates: a) 𝑎 = 0.0001 for 5000 generations and
b) 𝑎 = 0.001 for 1000 generations.

0 125 300 475 650 825

number of generations

pr
ob

ab
ili

ty

0.
0

0.
4

0.
8

Figure 13.4: The fraction of the sequence identical to ancestral after a certain number of gen-
erations, for two different mutation rates: a) 𝑎 = 0.0001 for 5000 generations and
b) 𝑎 = 0.001 for 1000 generations.

246

1. What does the Markov property mean for this model? How realistic do you think it is
for real genetic sequences?

2. What does this model assume about the relationship between different positions in the
sequence? Is this a realistic assumption?

3. Probability vectors plotted in figure ?? are deterministic, that is, they can be predicted
exactly from an initial probability vector. Does this mean they predict the exact ancestral
fraction for any sequence (which obeys the assumptions of the model)? Explain what
property of a sequence can have an effect of how well it will match the prediction

4. What do you expect would happen if the calculation continued for many more genera-
tions? In other words, for a DNA sequence which is very far removed from its ancestor,
what fraction of letters do you expect will match?

247

Tutorial 10: simulations of Markov models

Objectives

• use conditional statements
• understand how to use for loops to generate string of Markov states
• perform matrix multiplication
• generate a sequence of vectors by matrix multiplication
• visualize the distribution of an array of states

Simulating Markov transitions

The behavior of a Markov model is random, so the next state cannot be predicted from the
current state exactly. However, one can use a random number generator to produce a string
of states, given its transition probabilities and an initial value. This is called a computer
simulation, which does not give exact results but are rather numerical experiments, producing
data that are consistent with a given model and its assumptions.

Below is a code to simulate one time step for a two-state Markov model. It generates a new
state according to two transition probabilities, given an initial state. In the code below, the
initial state is set to 1 and the transition probabilities are 0.6 and 0.4. The code uses a
conditional statement to check what the initial state (in.state) is, and based on this use either
transition probability from 1 to 2 (trans1to2) or transition probability from 2 to 1 (trans2to1)
with a random number to make a random transition. A second conditional statement is used
to assign new.state to a new state if the random number is less than the transition probability,
and otherwise to leave new.state the same as in.state. The code also prints an error message
if the initial state is neither 1 nor 2; it’s good practice to cover all possibilities, and not to
assume that variables are set to the values that you expect. If this code is run multiple times,
you will see that the transitions are random: sometimes the model remains in the same state,
and other times it jumps to the other.

state <- 1 # set initial state
trans1to2 <- 0.6 # transition probability from 1 to 2
trans2to1 <- 0.4 # transition probability from 2 to 1
decider <- runif(1) # random number between 0 and 1

248

if (state==1) {
if (decider < trans1to2) { # randomly decide to transition

state <- 2
} else { # or to stay

state <-1
}

} else if (state==2) {
if (decider < trans2to1) { # randomly decide to transition

state <- 1
} else { # or to stay

state <-2
}

} else {
print ('Initial state must be either 1 or 2!')

}
print(state)

Exercises

1. Modify the script below to generate the new state with transition probability 0.2 from
state 1 to 2 and transition probability 0.8 from state 2 to 1, and with initial state 2.

state <- 1 # set initial state
trans1to2 <- 0.6 # transition probability from 1 to 2
trans2to1 <- 0.4 # transition probability from 2 to 1
decider <- runif(1) # random number between 0 and 1
if (state==1) {

if (decider < trans1to2) { # randomly decide to transition
state <- 2

} else { # or to stay
state <-1

}
} else if (state==2) {

if (decider < trans2to1) { # randomly decide to transition
state <- 1

} else { # or to stay
state <-2

}
} else {

print ('Initial state must be either 1 or 2!')

249

}
print(state)

2. Modify the script below by placing everything starting with the decider assignment
inside a for loop that repeats 20 times.

state <- 1 # set initial state
trans1to2 <- 0.6 # transition probability from 1 to 2
trans2to1 <- 0.4 # transition probability from 2 to 1
decider <- runif(1) # random number between 0 and 1
if (state==1) {

if (decider < trans1to2) { # randomly decide to transition
state <- 2

} else { # or to stay
state <-1

}
} else if (state==2) {

if (decider < trans2to1) { # randomly decide to transition
state <- 1

} else { # or to stay
state <-2

}
} else {

print ('Initial state must be either 1 or 2!')
}
print(state)

3. The previous script replaced the value of state with a new value every iteration. Copy
that script and modify it by pre-allocating a vector of states state_vec prior to the for
loop by using the function rep() and the initial value to create a vector of sufficient
length (21). Inside the loop, check the current value of state_vec (index i) in the
conditional statements, and assign the new value to the next index of state_vec. After
the loop is done, use table() as shown below to report how many of the states have
values 1 and 2.

table(state_vec)

250

Matrix multiplication

The easiest way to perform the cumbersome calculations for matrix multiplication is to out-
source them to a computer. R provides a special operation symbol just for this purpose, which
is an asterisk surrounded by percent signs: %*%. To illustrate we will multiply the matrix A
and the vector b, shown below:

𝐴 = (3 1
−5 0) ; 𝑏 = (10

−2)

To perform this operation in R, we must first define the matrix and the vector, and then
perform multiplication:

A <- matrix (c(3,-5,1,0),nrow=2)
b <- c(10,-2)
c <- A%*%b
print(c)
d <- b%*%A
print(d)

The probability distribution vector for a Markov model advances one time step at a time by
multiplication with the transition matrix of the model. For example, let us take the same
transition matrix as in section 11.2, and multiply it by the initial vector prob0=(0.5, 0.5)
(which means that initially the model is in states 1 and 2 with equal probability 0.5).

M <- matrix(c(0.95,0.05,0.1,0.9),nrow=2, ncol=2)
print(M)
prob0<- c(0.5,0.5)
prob1 <- M%*%prob0
print(prob1)

The element M[i,j] (i-th row and j-th column) contains the probability of transition from state
number j to state number i. Take care to enter the transition probabilities in the correct order,
as the matrix() function by default places the element by column (first fills the first column,
then the second) as you can see in the script above. The result shows that after 1 time step,
the probability distribution vector changes from (0.5,0.5) to (0.525, 0.475). What about taking
many time steps?

Computers can perform repetitive operations much better than humans, so we will take ad-
vantage of their arithmetic proficiency. Since each time step involves multiplication of the
current probability vector by the transition matrix, this can be done automatically with a for
loop. The only difficulty is that, while the transition matrix remains the same, the probability
vector needs to be updated. There are two ways of handing this: 1) replace the old vector

251

with the new, with the disadvantage that the previous vectors all get over-written in memory;
2) save all of the probability vectors in a rectangular matrix, which means we can plot all
the probability vectors over time and see their evolution. The following script takes the first
approach:

M <- matrix (c(0.95,0.05,0.1,0.9),nrow=2)
print(M)
prob<- c(0.1,0.9)
numstep <- 20
for (i in 1:numstep) {

prob <- M%*%prob
}
print(prob)

Very important information: to access only one row of a matrix, use the first (row) index and
leave the second index blank; similarly, to access only one column of a matrix, use the second
(colum) index and leave the first index blank. For example:

M <- matrix (c(0.95,0.05,0.1,0.9),nrow=2)
print(M)
print(M[2,])
print(M[,1])

Note the the print function prints both the row and the column as row vectors.

Exercises

1. Find and fix the error in the following matrix assignment for the matrix A:

𝐴 = (0 1
−5 10)

A <- matrix (c(0,1,-5,10),nrow=2)
print(A)

2. Copy the correct assignment of matrix A from the exercise above, assign a vector 𝑏 =
(0, 1), multiply A by b and assign the result to the vector b, then print it out.

copy code from above here
print(b)

252

3. Copy the code from the exercise above and use a for loop to repeat the matrix multipli-
cation 10 times, each time assigning the result to vector b, then print out the resulting
vector.

copy code from above here
print(b)

4. Copy the code from the exercises and modify it to save of all the vectors that were
generated by matrix multiplication, by pre-allocating the matrix bs with two rows and
11 columns with zeros and assign the vector b to the first column. Use the for loop to
assign the next column of the matrix bs as the product of the matrix A and the current
column of the matrix bs, then print out the whole array bs.

copy code from above here
print(bs)

Barplots for histograms and arrays

Visualizing a large number of values can be done by using the function table() to count the
frequencies of different values and then using barplot() to plot those frequencies, resulting in
a nice-looking histogram. This script visualizes a vector of length 100 of 0s and 1s, generated
by rbinom():

num <- 100
p<- 0.4
vec.vals <- rbinom(num, 1, p)
barplot(table(vec.vals), ylab = 'Frequencies of states')

A matrix can be visualized using barplot() as well, with each column represented by a bar
with colors representing values of the different rows. For example, the 2 by 4 matrix below is
visualized like this:

cols <- 4
A <- matrix (c(2,1, 3,3, 2, 4, 3,1),nrow=2, ncol = cols)
barplot(A, names.arg=1:cols, xlab = 'columns', ylab = 'row values')

barplot() can also be used to visualize the frequencies contained in an matrix array of values.
Let us generate a matrix containing multiple strings of states, one in each row, with initial
states all in column 1, and each successive column containing the states at that time step (this
is not how the actual matrix of states is calculated in lab 7, this is just to generate a state
matrix for illustration.)

253

numsteps <- 10 # set the number of steps
numstrings <- 5 # set number of strings
numstates <- 2 # number of states in the model
generate a random state_mat
state_mat <- replicate(numsteps+1,sample(1:numstates,numstrings,replace=TRUE))
print(state_mat)

The following script counts the number of each state (1 and 2) in each column, and plots those
frequencies as bars. You will use this script to plot the frequencies of your simulations in part
3 of R lab 7.

Visualizing frequencies of states at each time
state_count <- matrix(0,nrow=numstates,ncol=numsteps+1)
for (k in 1:(numsteps+1)) {
state_count[,k] <- tabulate(state_mat[,k],nbins=numstates)

}
barplot(state_count,main='frequency of states vs. time',xlab='time', names.arg=0:numsteps, ylab='state counts',col=1:numstates)

254

14 Stationary distributions of Markov chains

The tears of the world are a constant quantity. For each one who begins to weep
somewhere else another stops. The same is true of the laugh. – Samuel Beckett,
Waiting for Godot

In the last chapter we learned to compute the distributions of Markov models, bringing a
measure of predictability to the randomness. Using repeated matrix multiplication we could
compute the distribution for any given time, and observe how probability vectors evolve. You
may have noticed that in the examples in the computational projects the probability vectors
tended to approach some particular distribution and then essentially remain the same. It
turns out that Markov chains have special stationary distributions at which the transitions
are perfectly balanced so the probabilities of each state remain the same. In this chapter we
will study the stationary distributions of Markov chains and learn to do the following:

• calculate the stationary distribution of a small Markov models on paper
• tell whether a Markov chain converges to a stationary distribution
• run multiple simulations in R and observe convergence to a stationary distribution
• the concept of Hidden Markov Models

14.1 History of Markov chains

The idea of chains of random variables that depend on each other was born of a feud. In the late
19th century probability theory had made great strides, both in theory and in ground-breaking
applications to physics, like the work of Boltzmann in thermodynamics. Randomness and its
mysteries become a fashionable topic of conversation outside of the confines of mathematics
classrooms and conferences. Sociological studies were published that claimed to show that
the behavior of a large number of people was predictable due to the law of large numbers.
The mathematician and self-styled philosopher P.A. Nekrasov published a paper in 1902 that
made an audacious leap of logic: he claimed that since human beings were subject to the law
of large numbers, and the law of large numbers requires independence between constituent
random variables, humans must have been endowed with free will, in agreement with his
devout Russian Orthodox beliefs. The argument is questionable both mathematically and
theologically, and it especially grated on another mathematician, A.A. Markov [?].

Markov was a great mathematician as well as a malcontent. In contrast with Nekrasov, he was
neither a monarchist nor a devout Orthodox believer, and even asked to be excommunicated

255

from the church after it expelled the great writer Tolstoy for heresy. Markov already disdained
Nekrasov both personally and professionally, and the paper inspired him to action. After
several years of work, he published a paper entitled An extension of the law of large numbers
to quantities dependent on each other [?], which founded the concept of Markov chains. As
the title states, it provided a counterexample to Nekrasov’s claim that the predictability of
the behavior of large number of random variables implied their independence. Markov showed
that variables that depend on each other can also behave in a predictable manner in large
numbers.

Figure 14.1: Two Markov models based on the text of Eugene Onegin, with states denoting
consonants (C) and vowels (V); model based on the Russian text is on the left
and the one based on English on the right [?]; the first 4 lines of the poem in the
original [?] and in English translation [?] are below the respective diagrams.

In addition to inventing the mathematical concepts, Markov was the first to use his chains
of random variables to make a Markov model. In his 1913 paper [?], he proposed a model
based on the classic Russian novel in verse Eugene Onegin by A.S. Pushkin. To make the
task manageable, he divided the letters into two categories: consonants and vowels, discarding
spaces, punctuation, and two Russian letters which make no sound. To calculate the transition
probabilities between the two states, Markov took the first 20,000 letters of the poem and

256

counted by hand the fraction of vowels that were followed by vowels, and the fraction of
consonants that were followed by consonants, and built the first two-state text-based model,
foreshadowing models of bioinformatics used now to analyze genome structure.

Figure ?? shows two models based on 20,000 letters of Eugene Onegin in Russian and in
English translation. The resulting transition probabilities are different than those computed
by Markov in his paper: whereas in the English text the probability of a vowel following
another vowel is 0.175, in the original Russian it is 0.128; in English the probability of a
consonant following another consonant is 0.474, while in Russian it is 0.663. Clearly, Russian
words contain more consonant clusters and fewer vowels next to each other. In both cases, the
state of the previous letter affects the probability of the next letter being a vowel. Remarkably,
the distribution of consonants and vowels is predictable in any sufficiently long piece of text: in
English it is about 39% vowels and 61% consonants, and in Russian it is about 28% vowels and
72% consonants. This is an example of the main result of the first Markov chain paper: large
numbers of interconnected random variables converge to a predictable distribution, called the
stationary distribution.

14.2 Stationary distributions

What happens when we extend our calculation of the probability distribution vectors of a
Markov chain over a long time? Let us consider the cell cycle model with states Q and R. We
have seen the state sequences of a single cell over time, so let us consider what happens to a
population of cells. The basic question is: given that all the cells start out in a particular state
(e.g. R), what fraction of cells is in state R after a certain number of time steps? Figure ??
shows the result of propagating the QR model for 30 time steps, starting with two different
initial distributions. You can try this at home yourself, starting with different initial distribu-
tions, and see that all of them converge over time to the same fraction of Q and R. This is
called the stationary distribution of the Markov chain.

Definition

For a finite-state Markov model with transition matrix 𝑀 , a *stationary (or equilibrium)
distribution() is a vector ⃗𝑃𝑠 that has all nonnegative elements which add up to 1, and
satisfies

⃗𝑃𝑠 = 𝑀 × ⃗𝑃𝑠

The definition says that a probability vector which is unchanged by multiplication by the
transition matrix will remain stationary over time in a Markov chain. [?]

Example. The stationary distribution vector can be calculated analytically from the defini-
tion. Let us find the stationary vector ⃗𝑃𝑠 for the QR cell model with components 𝑃𝑄 and 𝑃𝑅

257

0 3 6 9 13 17 21 25 29

QR model with initial state Q

time

pr
ob

ab
ili

ty

0.
0

0.
4

0.
8

Figure 14.2: Probability distributions converge to the same distribution starting from two dif-
ferent initial distributions: a) P(0) =(0,1) ; b) P(0) =(1,0)

0 3 6 9 13 17 21 25 29

QR model with initial state R

time

pr
ob

ab
ili

ty

0.
0

0.
4

0.
8

Figure 14.3: Probability distributions converge to the same distribution starting from two dif-
ferent initial distributions: a) P(0) =(0,1) ; b) P(0) =(1,0)

258

(the fractions of quiescent and replicating cells in the stationary distribution):

(𝑃𝑄
𝑃𝑅

) = (0.95 0.1
0.05 0.9) (𝑃𝑄

𝑃𝑅
) = (0.95𝑃𝑄 + 0.1𝑃𝑅

0.05𝑃𝑄 + 0.9𝑃𝑅
)

This means there are two equations to solve for two variables. It turns out that they are
equivalent:

0.95𝑃𝑄 + 0.1𝑃𝑅 = 𝑃𝑄 ⇒ 0.1𝑃𝑅 = 0.05𝑃𝑄 ⇒ 𝑃𝑅 = 0.5𝑃𝑄

0.05𝑃𝑄 + 0.9𝑃𝑅 = 𝑃𝑅 ⇒ 0.05𝑃𝑄 = 0.1𝑃𝑅 ⇒ 0.5𝑃𝑄 = 𝑃𝑅

Both equations say that in the stationary distribution there are twice as many quiescent cells as
replicating. If we add the condition that 𝑃𝑄 + 𝑃𝑅 = 1, then we can have the exact solution:

⃗𝑃𝑠 = (𝑃𝑄
𝑃𝑅

) = (
2
31
3

)

This says that in a large population of cells in the cell cycle model, a population with 2/3
quiescent and 1/3 replicating is stationary. This does not mean that each individual cell
remains in the same state! Each cell still randomly transitions between the two states, but the
number of cells switching to the quiescent state is balanced by the number of cell switching out
of the state, so the net distribution remains the same. We will observe this using simulations
with multiple individual cells in section ??.

259

14.2.1 Exercises

{width = 25%} {width = 25%} {width

= 25%} {width = 25%}

For the following Markov models: a) write down the transition matrix 𝑀 ; b) find the stationary
probability distribution on paper; c) use matrix multiplication in R to check that it satisfies
the definition of stationary distribution.

1. Use the model in the transition diagram in figure ?? (Model 1).

260

2. Use the model in the transition diagram in figure ?? (Model 2).

3. Use the model in the transition diagram in figure ?? (Model 3).

4. Use the model in the transition diagram in figure ?? (Model 4).

5. An ion channel can be in either open or closed state. If it is open, then it has prob-
ability 0.1 of closing in 1 microsecond; if closed, it has probability 0.3 of opening in 1
microsecond.

6. An individual can be either susceptible or infected, the probability of infection for a
susceptible person is 0.05 per day, and the probability an infected person becoming
susceptible is 0.12 per day.

7. The genotype of an organism can be either normal (wild type) or mutant. Each gener-
ation, a wild type individual has probability 0.03 of having a mutant offspring, and a
mutant has probability 0.005 of having a wild type offspring.

8. A gene is is either expressed (On) or not expressed (Off) by a stochastic mechanism. In
the On state, it has probability 0.3 per minute of turning off, and in the Off state, it has
probability 0.02 per minute of turning on.

9. The nAChR ion channel can be in one of three states: resting (R), closed with Ach bound
(C), and open (O) with transition probabilities (per one microsecond): 0.04 (from R to
C), 0.07 (from C to R), 0.12 (from C to O) and 0.02 (from O to C); the other transition
probabilities are 0.

10. There are three kinds of vegetation in an ecosystem: grass, shrubs, and trees. Every
year, 25% of grassland plots are converted to shrubs, 20% of shrub plots are converted
to trees, 8% of trees are converted to shrubs, and 1% of trees are converted to grass; the
other transition probabilities are 0.

14.3 Bioinformatics and Markov models

In section ?? we saw a simple Markov model for a string of characters, which was used to
model a poetic text in Russian. While it did provide some information about the distribution
of the vowels and consonants in the text: for instance, that it is substantially more likely
that a vowel is followed by a consonant than by another vowel, the usefulness of the model is
limited. However, analysis of strings of characters is a crucial component of modern biology
which is awash in sequence data: DNA, RNA, and protein sequences from different organisms
are pouring into various data bases. Markov models have become indispensable for making
sense of sequence data.

One of the major problems in bioinformatics is identifying portions of the genome which code
for proteins [?]. A nucleotide sequence consists of four letters, but their meaning and function
depends on where they are and how they are used. Some parts of the genome (in humans, over

261

90%) are not part of a gene, and the DNA sequence is never translated into an amino acid
sequence. Others are genes, which are continuous chunks of DNA sequence that are flanked by
a promotor sequence and regulatory region which controls when a gene is expressed, followed
by the gene proper which is transcribed into RNA and then translated into amino acids. Some
parts used to be genes, but are no longer in use, those are called pseudogenes. These can be
difficult to distinguish from actual, functional genes, because their sequences still have similar
features, including the proximity of promoters, regulatory and coding regions.

Within the borders of a gene there are other divisions. In eukaryotic genomes, after the gene
sequence is transcribed into RNA, some portions called introns are cut out, then the remain-
ing pieces called exons are spliced together and only then translated into protein sequences.
The role of introns in biology is a topic of ongoing research, since it seems rather wasteful
to transcribe portions of genes, which are sometimes considerably longer than the protein-
coding exons, only to discard them later. The problem of identifying introns within a gene is
important.

Markov models are used to determine the structure behind the sequence of letters. Based
on known sequences of exons and introns, one can generate a Hidden Markov Model (HMM)
that connects the DNA sequence with its underlying meaning: whether it is part of an exon
or an intron. These models are more complex than the plain Markov models that we have
studied: they involve two sets of states: the hidden ones, like introns and exons, which are
not observable, and the observations, such as the four nucleotides (A,T,G,C). There are also
two sets of transition probabilities: the transition probabilities between hidden states, and the
emission probabilities, which are the probabilities that a hidden state produces a particular
observation.

Figure ?? shows an example of such a model for gene structure. The HMM has three hidden
states: E (exon), 5 (the 5? boundary of an intron), and I (intron). Each of these states has
its own probability distribution of nucleotides (letters in the sequence), with Exons containing
equal proportions of all four letters, the 5? almost always being a G, and the Introns containing
four times as many As and Ts as Gs and Cs. The length of an intron is arbitrary, so the state
has a probability of remaining in the same state. Each of the hidden states has its own
probability of “emitting’ ’ a letter, so one can devise algorithms for finding the most probable
string of hidden states based on an observed sequence of nucleotides. HMM enables intron-
hunting to be done in a systematic manner, although, as with any random model, the results
are never certain.

262

Discussion questions

The following questions refer to the study What is a hidden Markov model?

1. What does the Markov property mean for Hidden Markov Models presented in this
paper? How reasonable is it for an actual genetic sequence?

2. Hidden Markov models can predict the best state path or the sequence of hidden states
with the highest probability. Why is a single state path often not sufficient to answer
the questions?

3. What additional assumptions does the HMM in figure ?? make about the distribution
of letters in an exon or intron? Comment on the biological implications.

4. What bioinformatics problems are HMMs best suited for? What are some of their draw-
backs?

263

https://www.nature.com/articles/nbt1004-1315

15 Dynamics of Markov models

No hour is ever eternity, but it has its right to weep.
– Zora Neale Hurston, Their Eyes Were Watching God

We have learned several approaches for analyzing the behavior of Markov models. We know
that many Markov models converge to a single stationary distribution over time. For many
biological questions, however, the stationary distribution itself is not very interesting, but what
matters is how fast the probability distribution converges. In this chapter we will encounter
more advanced tools for analyzing matrices which will enable us to answer that question. This
approach will be illustrated in application to determination of evolutionary distance based on
sequence data. In this chapter you will learn to do the following:

• meaning of eigenvalues and eigenvectors
• calculate eigenvalues and eigenvectors of 2 by 2 matrices
• mixing times of Markov chains
• calculate the phylogenetic distance between two DNA sequences

15.1 Phylogenetic trees

Over many generations, genomes of living creatures accumulate random mutations, as we
previously discussed in chapters 3 and 6. Each individual genome in a population has its own
polymorphisms, and thus some are more advantageous for survival in a particular environment
than others. The process of natural selection is stochastic, and the notion of “survival of the
fittest” is not a guarantee that the best-adapted always out-compete the rest - sometimes a
more fit individual has a bad day and can’t find any food or gets eaten by a predator. However,
over time the allele that are advantageous have a better chance of survival and become more
common in the population, while other alleles become rare or vanish [?]. This process never
stops, because the environmental conditions change, and new mutations arise, so at any point
in time the individual genomes in a species have some variations, although the vast majority
of their genomes are identical.

One may describe the collection of genomes in a population or a species in terms of the most
common alleles; this is roughly what we call the human genome, or the elephant genome, or
the rice genome. Once we have determined a consensus genome sequence for a species, it can
be used to pose and answer questions about its heritage. If the genomes of two species are

264

Figure 15.1: Phylogenetic tree for life forms on Earth (by Eric Gaba (NASA Astrobiology
Institute) in public domain via Wikimedia commons)

more similar to each other than to a third, it is likely that the similar pair diverged more
recently than the third one. This information allows one to build phylogenetic trees that
visually illustrate the evolutionary history of a collection of species, with each fork in the tree
representing the splitting of lineages. Interpreting phylogenetic tress is fairly straightforward:
species or clades (a collection of species that make an evolutionary unit) that are closely related
are directly connected to a common ancestor, while the path between those that are more
distantly related passes through multiple forks before reaching the common ancestor. Some
trees also incorporate time information as branch lengths, with longer branches indicating that
more time has passes from a divergence event.

Figure ?? shows the phylogenetic tree for the lifeforms on Earth, divided into the three major
kingdoms: Bacteria, Archea, ane Eukaryota, the latter includes all multicellular lifeforms,
including plants, animals, and fungi. The nodes (end points) show the major groupings of
life existing today, and the branches show the order of evolutionary divergence of lineages,
starting with the hypothesized root of the tree at the bottom, known as LUCA (last universal
common ancestor) [?]. The order of splitting and the grouping of the nodes was determined
by molecular sequence data (in particular ribosomal RNA) that has become available in the
past 20 years.

In the past, biologists studied observable traits of different life forms, such as anatomy, phys-
iology, or developmental features, and determined similarity from these data. However, the

265

wealth of molecular sequence data has offered a great amount of evidence which is the primary
material of evolution. Phylogeny, particularly that of unicellular organisms, has been revolu-
tionized by these data; we now know that prokaryotes are divided into kingdoms of Archea and
Bacteria which are evolutionarily more distant than humans are from fungi. Sequence data are
quantitative and they require mathematical models to interpret them and to infer phylogenies.
In the last section of this chapter we will introduce mathematical tools that connect related
sequences to the evolutionary divergence from their common ancestor.

15.2 Eigenvalues and eigenvectors

15.2.1 basic linear algebra

In the past two chapters we have seen matrices and learned the definition of matrix multipli-
cation, but now we are ready to go deeper into the branch of mathematics studying matrices
and their generalizations, called linear algebra. It is fundamental to both pure and applied
mathematics [?], and its tools are used in countless applications and fields. Let us define two
useful numbers that help describe the properties of a matrix:

Definition

The trace 𝜏 of a matrix 𝐴 is the sum of the diagonal elements: 𝜏 = ∑𝑖 𝐴𝑖𝑖.
The determinant Δ of a 2 by 2 matrix 𝐴 is given by the following: Δ = 𝑎𝑑 − 𝑏𝑐, where

𝐴 = (𝑎 𝑏
𝑐 𝑑)

For larger matrices, the determinant is defined recursively in terms of 2 by 2 submatrices of
the larger matrix, but we will not give the full definition here.

In this section we will learn to characterize square matrices by finding special numbers and
vectors associated with them. At the core of this analysis lies the concept of a matrix as an
operator that transforms vectors by multiplication. To be clear, in this section we take as
default that the matrices 𝐴 are square, and that vectors ⃗𝑣 are column vectors, and thus will
multiply the matrix on the right: 𝐴 × ⃗𝑣.
A matrix multiplied by a vector produces another vector, provided the number of columns
in the matrix is the same as the number of rows in the vector. This can be interpreted as
the matrix transforming the vector ⃗𝑣 into another one: 𝐴 × ⃗𝑣 = �⃗�. The resultant vector �⃗�
may or may not resemble ⃗𝑣, but there are special vectors for which the transformation is very
simple.

266

*Example. Let us multiply the following matrix and vector:

(2 1
2 3) (1

−1) = (2 − 1
2 − 3) = (1

−1)

We see that this particular vector is unchanged when multiplied by this matrix, or we can say
that the matrix multiplication is equivalent to multiplication by 1. Here is another such vector
for the same matrix:

(2 1
2 3) (1

2) = (2 + 2
2 + 6) = (4

8)

In this case, the vector is changed, but only by multiplication by a constant (4). Thus the
geometric direction of the vector remained unchanged.

Generally, a square matrix has an associated set of vectors for which multiplication by the
matrix is equivalent to multiplication by a constant. This can be written down as a definition:

Definition

An eigenvector of a square matrix 𝐴 is a vector ⃗𝑣 for which matrix multiplication by 𝐴
is equivalent to multiplication by a constant. This constant 𝜆 is called the eigenvalue of
𝐴 corresponding the the eigenvector ⃗𝑣. The relationship is summarized in the following
equation:

𝐴 × ⃗𝑣 = 𝜆 ⃗𝑣

Note that this equation combines a matrix (𝐴), a vector (⃗𝑣) and a scalar 𝜆, and that both
sides of the equation are column vectors. This definition is illustrated in figure ??, showing a
vector (𝑣) multiplied by a matrix 𝐴, and the resulting vector 𝜆𝑣, which is in the same direction
as 𝑣, due to scalar multiplying all elements of a vector, thus either stretching it if 𝜆 > 1 or
compressing it if 𝜆 < 1. This assumes that 𝜆 is a real number, which is not always the case,
but we will leave that complication aside for the purposes of this chapter.

The definition does not specify how many such eigenvectors and eigenvalues can exist for a
given matrix 𝐴. There are usually as many such vectors ⃗𝑣 and corresponding numbers 𝜆 as the
number of rows or columns of the square matrix 𝐴, so a 2 by 2 matrix has two eigenvectors
and two eigenvalues, a 5x5 matrix has 5 of each, etc. One ironclad rule is that there cannot be
more distinct eigenvalues than the matrix dimension. Some matrices possess fewer eigenvalues
than the matrix dimension, those are said to have a degenerate set of eigenvalues, and at least
two of the eigenvectors share the same eigenvalue.

The situation with eigenvectors is trickier. There are some matrices for which any vector is
an eigenvector, and others which have a limited set of eigenvectors. What is difficult about
counting eigenvectors is that an eigenvector is still an eigenvector when multiplied by a constant.
You can show that for any matrix, multiplication by a constant is commutative: 𝑐𝐴 = 𝐴𝑐,
where 𝐴 is a matrix and 𝑐 is a constant. This leads us to the important result that if ⃗𝑣 is an

267

Figure 15.2: Illustration of the geometry of a matrix 𝐴 multiplying its eigenvector 𝑣, resulting
in a vector in the same direction 𝜆𝑣 (figure by Lantonov under CC BY-SA 4.0 via
Wikimedia Commons)

268

eigenvector with eigenvalue 𝜆, then any scalar multiple 𝑐 ⃗𝑣 is also an eigenvector with the same
eigenvalue. The following demonstrates this algebraically:

𝐴 × (𝑐 ⃗𝑣) = 𝑐𝐴 × ⃗𝑣 = 𝑐𝜆 ⃗𝑣 = 𝜆(𝑐 ⃗𝑣)

This shows that when the vector 𝑐 ⃗𝑣 is multiplied by the matrix 𝐴, it results in its being
multiplied by the same number 𝜆, so by definition it is an eigenvector.

Therefore, an eigenvector ⃗𝑣 is not unique, as any constant multiple 𝑐 ⃗𝑣 is also an eigenvector. It
is more useful to think not of a single eigenvector ⃗𝑣, but of a collection of vectors that can be
interconverted by scalar multiplication that are all essentially the same eigenvector. Another
way to represent this, if the eigenvector is real, is that an eigenvector as a direction that
remains unchanged by multiplication by the matrix, such as direction of the vector 𝑣
in figure ??. As mentioned above, this is true only for real eigenvalues and eigenvectors, since
complex eigenvectors cannot be used to define a direction in a real space.

To summarize, eigenvalues and eigenvectors of a matrix are a set of numbers and a set of vectors
(up to scalar multiple) that describe the action of the matrix as a multiplicative operator on
vectors. “Well-behaved” square 𝑛 by 𝑛 matrices have 𝑛 distinct eigenvalues and 𝑛 eigenvectors
pointing in distinct directions. In a deep sense, the collection of eigenvectors and eigenvalues
defines a matrix 𝐴, which is why an older name for them is characteristic vectors and values.

15.2.2 calculation of eigenvalues on paper

Finding the eigenvalues and eigenvectors analytically, that is on paper, is quite laborious even
for 3 by 3 or 4 by 4 matrices and for larger ones there is no analytical solution. In practice,
the task is outsourced to a computer, and we will see how to do this using R in section
??. Nevertheless, it is useful to go through the process in 2 dimensions in order to gain an
understanding of what is involved. From the definition ?? of eigenvalues and eigenvectors, the
condition can be written in terms of the four elements of a 2 by 2 matrix:

(𝑎 𝑏
𝑐 𝑑) (𝑣1

𝑣2
) = (𝑎𝑣1 + 𝑏𝑣2

𝑐𝑣1 + 𝑑𝑣2
) = 𝜆 (𝑣1

𝑣2
)

This is now a system of two linear algebraic equations, which we can solve by substitution.
First, let us solve for 𝑣1 in the first row, to get

𝑣1 = −𝑏𝑣2
𝑎 − 𝜆

Then we substitute this into the second equation and get:

−𝑏𝑐𝑣2
𝑎 − 𝜆 + (𝑑 − 𝜆)𝑣2 = 0

269

Since 𝑣2 multiplies both terms, and is not necessarily zero, we require that its multiplicative
factor be zero. Doing a little algebra, we obtain the following, known as the characteristic
equation of the matrix:

−𝑏𝑐 + (𝑎 − 𝜆)(𝑑 − 𝜆) = 𝜆2 − (𝑎 + 𝑑)𝜆 + 𝑎𝑑 − 𝑏𝑐 = 0

This equation can be simplified by using two quantities we defined at the beginning of the
section: the sum of the diagonal elements called the trace 𝜏 = 𝑎 + 𝑑, and the determinant
Δ = 𝑎𝑑 − 𝑏𝑐. The quadratic equation has two solutions, dependent solely on 𝜏 and Δ:

𝜆 = 𝜏 ±
√

𝜏2 − 4Δ
2

This is the general expression for a 2 by 2 matrix, showing there are two possible eigenvalues.
Note that if 𝜏2 − 4Δ > 0, the eigenvalues are real, if 𝜏2 − 4Δ < 0, they are complex (have
real and imaginary parts), and if 𝜏2 − 4Δ = 0, there is only one eigenvalue. This situation is
known as degenerate, because two eigenvectors share the same eigenvalue.

Example. Let us take the same matrix we looked at in the previous subsection:

𝐴 = (2 1
2 3)

The trace of this matrix is 𝜏 = 2 + 3 = 5 and the determinant is Δ = 6 − 2 = 4. Then by our
formula, the eigenvalues are:

𝜆 = 5 ±
√

52 − 4 × 4
2 = 5 ± 3

2 = 4, 1

These are the multiples we found in the example above, as expected.

15.2.3 calculation of eigenvectors on paper

The surprising fact is that, as we saw in the last subsection, the eigenvalues of a matrix can
be found without knowing its eigenvectors! However, the converse is not true: to find the
eigenvectors, one first needs to know the eigenvalues. Given an eigenvalue 𝜆, let us again write
down the defining equation of the eigenvector for a generic 2 by 2 matrix:

(𝑎 𝑏
𝑐 𝑑) (𝑣1

𝑣2
) = (𝑎𝑣1 + 𝑏𝑣2

𝑐𝑣1 + 𝑑𝑣2
) = 𝜆 (𝑣1

𝑣2
)

This vector equation is equivalent to two algebraic equations:

𝑎𝑣1 + 𝑏𝑣2 = 𝜆𝑣1

𝑐𝑣1 + 𝑑𝑣2 = 𝜆𝑣2

270

Since we have already found 𝜆 by solving the characteristic equation, this is two linear equations
with two unknowns (𝑣1 and 𝑣2). You may remember from advanced algebra that such equations
may either have a single solution for each unknown, but sometimes they may have none, or
infinitely many solutions. Since there are unknowns on both sides of the equation, we can
make both equations be equal to zero:

(𝑎 − 𝜆)𝑣1 + 𝑏𝑣2 = 0

𝑐𝑣1 + (𝑑 − 𝜆)𝑣2 = 0
So the first equation yields the relationship $v_1 = -v_2 b/(a-�) $ and the second equation
is 𝑣1 = −𝑣2(𝑑 − 𝜆)/𝑐, which we already obtained in the last subsection. We know that these
two equations must be the same, since the ratio of 𝑣1 and 𝑣2 is what defines the eigenvector.
So we can use either expression to find the eigenvector.

Example. Let us return to the same matrix we looked at in the previous subsection:

𝐴 = (2 1
2 3)

The eigenvalues of the matrix are 1 and 4. Using our expression above, where the element
𝑎 = 2 and 𝑏 = 1, let us find the eigenvector corresponding to the eigenvalue 1:

𝑣1 = −𝑣2 × 1/(2 − 1) = −𝑣2

Therefore the eigenvector is characterized by the first and second elements being negatives of
each other. We already saw in the example two subsections above that the vector (1, −1) is
such as eigenvector, but it is also true of the vectors (−1, 1), (−𝜋, 𝜋) and (106, −106). This
infinite collection of vectors, all along the same direction, can be described as the eigenvector
(or eigendirection) corresponding to the eigenvalue 1.

Repeating this procedure for 𝜆 = 4, we obtain the linear relationship:

𝑣1 = −𝑣2 × 1/(2 − 4) = 0.5𝑣2

Once again, the example vector we saw two subsections (2, 1) is in agreement with our calcula-
tion. Other vectors that satisfy this relationship include (10, 5), (−20, −10), and (−0.4, −0.2).
This is again a collection of vectors that are all considered the same eigenvector with eigenvalue
4 which are all pointing in the same direction, with the only difference being their length.

271

15.2.4 Exercises

{width = 25%} {width = 25%} {width

= 25%} {width = 25%}

For the following two-state Markov models a) calculate the eigenvalues of the transition matrix;
b) calculate the corresponding eigenvectors and explain which one corresponds to the stationary
distribution; c) use R to check that each of the eigenvectors obeys the definition ?? with its
corresponding eigenvalue.

272

1. Use the model in the transition diagram in figure ?? (Model 1).

2. Use the model in the transition diagram in figure ?? (Model 2).

3. Use the model in the transition diagram in figure ?? (Model 3).

4. Use the model in the transition diagram in figure ?? (Model 4).

5. An ion channel can be in either open or closed states. If it is open, then it has prob-
ability 0.1 of closing in 1 microsecond; if closed, it has probability 0.3 of opening in 1
microsecond.

6. An individual can be either susceptible or infected, the probability of infection for a
susceptible person is 0.05 per day, and the probability an infected person becoming
susceptible is 0.12 per day.

7. The genotype of an organism can be either normal (wild type) or mutant. Each gener-
ation, a wild type individual has probability 0.03 of having a mutant offspring, and a
mutant has probability 0.005 of having a wild type offspring.

15.2.5 rate of convergence

Consider a two-state Markov model with the transition matrix 𝑀 . As we know, the probability
distribution vector at time 𝑡 + 1 is the matrix 𝑀 multiplied by the probability distribution
vector at time 𝑡:

𝑃(𝑡 + 1) = 𝑀 × 𝑃(𝑡)
Using eigenvectors and eigenvalues, the matrix multiplication (which is difficult) can be turned
into multiplication by scalar numbers (which is much simpler). Suppose that the initial proba-
bility vector 𝑃(0) can be written as a weighted sum (linear combination) of the two eigenvectors
of the matrix 𝑀 , 𝑣1 and 𝑣2: 𝑃(0) = 𝑐1 ⃗𝑣1+𝑐2 ⃗𝑣2. I will explain exactly how to find the constants
𝑐1 and 𝑐2 a few paragraphs later, but for now, let’s go with this. Multiplying the matrix 𝑀
and this weighted sum (matrix multiplication can be distributed), we get:

𝑃(1) = 𝑀 × 𝑃(0) = 𝑀 × (𝑐1 ⃗𝑣1 + 𝑐2 ⃗𝑣2) = 𝑐1𝑀 × ⃗𝑣1 + 𝑐2𝑀 × ⃗𝑣2 =
= 𝑐1𝜆1 ⃗𝑣1 + 𝑐2𝜆2 ⃗𝑣2

The last step is due to definition ?? of eigenvectors and eigenvalues, which transformed matrix
multiplication into multiplication by the corresponding eigenvalues. To see how useful this is,
let us propagate the probability vector one more step:

𝑃(2) = 𝑀 × 𝑃(1) = 𝑀 × (𝑐1𝜆1 ⃗𝑣1 + 𝑐2𝜆2 ⃗𝑣2) = 𝑐1𝜆2
1 ⃗𝑣1 + 𝑐2𝜆2

2 ⃗𝑣2

It should be clear that each matrix multiplication results in one additional multiplication of
each eigenvector by its eigenvalue, so this allows us to write the general expression for the

273

probability vector any number of time steps 𝑡 in the future, given the weights of the initial
probability vector 𝑐1 and 𝑐2:

𝑃(𝑡) = 𝑐1𝜆𝑡
1 ⃗𝑣1 + 𝑐2𝜆𝑡

2 ⃗𝑣2

The constants 𝑐1, 𝑐2 are determined by the initial conditions, while the constants 𝜆1, 𝜆2 are
the eigenvalues and the vectors ⃗𝑣1, ⃗𝑣2 are the eigenvectors of the matrix 𝑀 . This expression is
also true for Markov models of any number states, except that they have as many eigenvalues
and eigenvectors as the dimensionality of the transition matrix. This is a hugely important
development, because it allows us to predict how quickly the probability vectors converge to
the stationary distribution. First, we need to use the following theorem:

Theorem

(Frobenius) A Markov transition matrix 𝑀 , characterized by having all nonnegative
elements between 0 and 1, and whose columns all sum up to 1, has eigenvalues that are
no greater than 1 in absolute value, including at least one eigenvalue equal to 1.

This theorem has an immediate important consequence for the dynamics of the probability
vector. According to our formula describing the time evolution of the probability vector, the
eigenvalues are raised to the power 𝑡, which is the number of time steps. Therefore, for any
eigenvalue which is less than 1, the number 𝜆𝑡 grows smaller and approaches 0 as time goes
on. Since the Frobenius theorem says that the eigenvalues cannot be greater than 1, the terms
in the expression for the probability vector decay, except for the ones which are equal to 1 or
to -1. The eigenvectors with eigenvalue 1 correspond to the stationary distribution that we
introduced in the last chapter, and true to their name, they remain unchanged by time, since
1𝑡 = 1 for all time. The ones with eigenvalue of -1 are a strange case, because they oscillate
between positive and negative values, without decaying in absolute value.

We now have the skills to answer the following question of practical importance: how quickly
does the probability vector approach the stationary distribution? (There may be more than
one stationary distribution vector, but that doesn’t change the analysis.) This depends on
how fast the contributions of other, non-stationary eigenvectors decay. If one of them has an
eigenvalue of -1, then its contribution never decays - we saw an example of that in the cyclic
2-state matrix in chapter 12. If all of the eigenvalues other than the stationary one are less
than 1 in absolute value, then all of them decay to zero, but at different rates. The one that
decays slowest is the largest of the eigenvalues which are less than one - the second-largest,
sometimes called the subdominant eigenvalue. This is the eigenvalue which determines the
rate of convergence to the stationary distribution because it is the “last person standing” of
the non-stationary eigenvalues, after the others have all vanished into insignificance.

Example. Consider a Markov model with the following transition matrix 𝑀 , with eigenvectors
and eigenvalues already solved by a computational assistant:

274

𝑀 = ⎛⎜
⎝

0.8 0.1 0.1
0.1 0.8 0.2
0.1 0.1 0.7

⎞⎟
⎠

𝜆1 = 1 ⃗𝑣1 = ⎛⎜
⎝

1/3
5/12
1/4

⎞⎟
⎠

𝜆2 = 0.7 ⃗𝑣2 = ⎛⎜
⎝

−1
1
0

⎞⎟
⎠

𝜆3 = 0.6 ⃗𝑣3 = ⎛⎜
⎝

0
−1
1

⎞⎟
⎠

Let us compute, using the tools of this section, how the probability distribution vector evolves
starting with 𝑃 (0) = (7/12, 5/12, 0) (I chose this particular initial probability distribution
because it makes the algebra simple, but you can start with any initial vector you want.) The
first step is to find what is called the decomposition of the initial probability vector into its
three eigenvectors:

𝑃(0) = ⎛⎜
⎝

7/12
5/12

0
⎞⎟
⎠

= 𝑐1
⎛⎜
⎝

1/3
5/12
1/4

⎞⎟
⎠

+ 𝑐2
⎛⎜
⎝

−1
1
0

⎞⎟
⎠

+ 𝑐3
⎛⎜
⎝

0
−1
1

⎞⎟
⎠

It turns out that the desired coefficients are 𝑐1 = 1, 𝑐2 = −1/4, and 𝑐3 = −1/4 - you can check
yourself that they add up to the initial vector we want. Therefore, after some number of time
steps 𝑡, the probability distribution vector can be expressed like this:

𝑃(𝑡) = ⎛⎜
⎝

1/3
5/12
1/4

⎞⎟
⎠

− 1
40.7𝑡 ⎛⎜

⎝

−1
1
0

⎞⎟
⎠

− 1
40.6𝑡 ⎛⎜

⎝

0
−1
1

⎞⎟
⎠

All three eigenvectors, multiplied by their eigenvalues to the power 𝑡, are present in the ex-
pression, but the third eigenvalue (0.6) decays much faster than the second one (0.7). After
5 time steps, 0.75 = 0.168, while 0.65 = 0.078, so the contribution of the third eigenvector
is about half that of the second; after 10 time steps, 0.710 = 0.028, while 0.610 = 0.006, so
the contribution of the third eigenvector is about one-fifth that of the second; after 20 time
steps, 0.720 ≈ 8 × 10−4, while 0.620 ≈ 4 × 10−5, so the contribution of the third eigenvector is
about one-twentieth that of the second. The trend is clear: although 0.6 and 0.7 are not that
different, raising them to higher powers makes the ratio between them get smaller, until the
contribution of the smaller of the two eigenvalues is negligible, however you’d like to define
that term - less than 1%? less than 0.01%? - eventually the smaller eigenvalue will reach
that level of insignificance. This is illustrates why the rate of convergence to the stationary
distribution (1/3, 5/12, 1/4) is determined by the eigenvalue 0.7, and the smaller eigenvalue
can be neglected.

275

15.3 Eigenvectors in R

R has a standard set of functions to handle linear algebra computations. One of the most
important of those is the calculation of eigenvectors and eigenvalues, also known as diagonal-
ization of a matrix, for reasons you’ll understand if you take a proper linear algebra course, as
I strongly recommend for anyone who intends to be involved in quantitative biology.

The function to calculate the special numbers and vectors is eigen(), and the name of the
matrix goes between the parentheses. The function returns a data frame as its output, with
$values and $vectors storing the eigenvalues and the eigenvectors, respectively. Here is a
script to define the matrix we analyzed in the examples in section ?? and then calculate and
print out its eigenvalues and eigenvectors:

test.matrix <- matrix(c(2, 2, 1, 3),nrow=2)
print(test.matrix)

[,1] [,2]
[1,] 2 1
[2,] 2 3

result <- eigen(test.matrix)
print(result$values)

[1] 4 1

print(result$vectors)

[,1] [,2]
[1,] -0.4472136 -0.7071068
[2,] -0.8944272 0.7071068

The resulting eigenvalues and 4 and 1, just as we computed above. However, the situation
with eigenvectors is trickier. In the R output they are presented as column vectors, and you
may notice that they have the same ratio of elements as the calculated eigenvectors, but the
numbers may appear strange. As we discussed, the eigenvector for a particular eigenvalue can
be multiplied by any constant and still be a valid eigenvector. R (and other computational
tools) thus has a choice about which eigenvector to output, and it typically prefers to normalize
its eigenvectors by making sure their length (Euclidean norm) is equal to 1. You may observe
that if you take square the two elements of one of the eigenvectors in the output and add them

276

up, the result will be 1. This is convenient for some purposes, but doesn’t make for clean
looking vectors in terms of the elements. But since we can multiply (or divide) the eigenvector
by any constant, we can choose to make it look cleaner, for instance by making sure one of its
elements is equal to 1. The next script illustrates how to make that happen by dividing each
eigenvector by the value of its first element, which results in the same form of eigenvectors
that we wrote down in the analytic solution:

eigen1<-result$vectors[,1]/result$vectors[1,1]
print(eigen1)

[1] 1 2

eigen2<-result$vectors[,2]/result$vectors[1,2]
print(eigen2)

[1] 1 -1

Let us now analyze a transition matrix, for example one that we investigated in the last
subsection of section ??. This is how I obtained the eigenvalues and eigenvectors that were
used to make predictions about the evolution of the probability vector. One important issue
here is how best to normalize the eigenvectors. The eigenvector corresponding the eigenvalue
1 is (a multiple of) the stationary distribution vector, but in order to make it a probability
distribution vector, its elements must add up to 1. The way to ensure this property is to divide
the eigenvector by the sum of its elements. The two other eigenvector are not probability
vectors, in fact they both contain negative elements, so it doesn’t make sense to normalize
them the same way. Any normalization of these vectors is arbitrary, so I choose to divide each
by the value of one of its elements. Notice one more strange thing: the two non-stationary
eigenvectors each contain a very small number on the order of 10−16. You may remember from
section ?? that this is the limit of precision for storing numbers in R, so these values are not
real, they are errors, and instead should be replaced with zeros.

trans.matrix <- matrix(c(0.8,0.1,0.1,0.1,0.8,0.1,0.1,0.2,0.7),nrow=3)
print(trans.matrix)

[,1] [,2] [,3]
[1,] 0.8 0.1 0.1
[2,] 0.1 0.8 0.2
[3,] 0.1 0.1 0.7

277

result <- eigen(trans.matrix)
print(result$values)

[1] 1.0 0.7 0.6

print(result$vectors)

[,1] [,2] [,3]
[1,] 0.5656854 -7.071068e-01 -7.101010e-16
[2,] 0.7071068 7.071068e-01 -7.071068e-01
[3,] 0.4242641 3.330669e-16 7.071068e-01

eigen1<-result$vectors[,1]/sum(result$vectors[,1])
print(eigen1)

[1] 0.3333333 0.4166667 0.2500000

eigen2<-result$vectors[,2]/result$vectors[1,2]
print(eigen2)

[1] 1.000000e+00 -1.000000e+00 -4.710277e-16

eigen3<- result$vectors[,3]/result$vectors[2,3]
print(eigen3)

[1] 1.004235e-15 1.000000e+00 -1.000000e+00

We now have the tools to calculate the eigenvalues and eigenvectors of transition matrices, and
we can use them to predict two things: 1) the stationary distribution, which is the properly
normalized eigenvector with eigenvalue 1, and 2) how quickly probability vectors converge to
the stationary distribution, which depends on the second-largest eigenvalue. The first task
was already accomplished in the script above.

The second question needs clarification: what does it mean to “converge”, that is, how close
does the probability distribution need to be to the stationary one, before we can say it con-
verged? The answer is necessarily arbitrary, because a probability vector never actually reaches

278

the stationary distribution unless the initial vector is stationary. Distances between vectors
are typically measured using the standard Euclidean definition of distance (the square root
of the sum of the squares of differences of the elements). The following R script propagates
an initial probability vector for 30 time steps, and at each step calculates the distance of the
probability vector to the stationary vector (which we calculated above).

nstep <- 30 # set number of time steps
stat.vec <- eigen1 # set the stationary distribution
prob.vec <- c(1,0,0)
set the initial probability vector
dist.vec <- rep(0,nstep) # initialize distance vector
dist.vec[1] <- sqrt(sum((prob.vec -stat.vec)^2))
for (i in 2:nstep) {
propagate the probability vector
prob.vec <- trans.matrix %*% prob.vec
dist.vec[i] <- sqrt(sum((prob.vec -stat.vec)^2))

}

The distance to the stationary vector as a function of time is plotted in figure ?? along with
the exponential decay of the second leading eigenvalue 0.7𝑡 over the same number of time
steps. While initially the two are not identical, over time the contribution of the smaller
eigenvalue becomes insignificant and the second-leading eigenvalue describes the approach of
the probability vector to the stationary distribution. The effect of choosing a different initial
probability vector is not very large, with the exception of the case when the initial vector is
exactly the stationary distribution (in which case the distance is zero initially and remains zero)
or exactly the eigenvector with the smaller eigenvalue, in which case the smallest eigenvalue
governs the convergence.

plot(dist.vec,xlab='time step', ylab='distance from stationary distribution',cex=1.5, cex.axis=1.5,cex.lab=1.5)
steps<-1:nstep # vector of time steps
plot the exponential decay of the eigenvalue
lines(steps,0.7^steps,col='red',lwd=3)
prob.vec <- c(0,1,0) # set the initial probability vector
dist.vec <- rep(0,nstep) # initialize distance vector
dist.vec[1] <- sqrt(sum((prob.vec -stat.vec)^2))
for (i in 2:nstep) { # propagate the probability vector
prob.vec <- trans.matrix %*% prob.vec
dist.vec[i] <- sqrt(sum((prob.vec -stat.vec)^2))

}
plot(dist.vec,xlab='time step', ylab='distance from stationary distribution', cex=1.5, cex.axis=1.5,cex.lab=1.5)
plot the exponential decay of the eigenvalue
lines(steps,0.7^steps,col='red',lwd=3)

279

0 5 10 15 20 25 30
0.

0
0.

4
0.

8

time stepdi
st

an
ce

 fr
om

 s
ta

tio
na

ry
 d

is
tr

ib
ut

io
n

Figure 15.3: Decay of the distance from the stationary distribution (circles) and the exponen-
tial decay of the second-leading eigenvalue (red lines), plotted for two different
initial probability distributions.

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

time stepdi
st

an
ce

 fr
om

 s
ta

tio
na

ry
 d

is
tr

ib
ut

io
n

Figure 15.4: Decay of the distance from the stationary distribution (circles) and the exponen-
tial decay of the second-leading eigenvalue (red lines), plotted for two different
initial probability distributions.

15.4 Molecular evolution

Substitution mutations in DNA sequences can be modeled as a Markov process, where each
base in the sequence mutates independently of others with a transition matrix 𝑀 . Let the
bases A, G, C, T correspond to states 1 through 4, respectively. A classic model for base
substitution from one generation to the next is based on the assumption that all substitution

280

mutations are equally likely, and that the fraction 𝑎 of the sequence will be substituted each
generation. This was proposed by Jukes and Cantor [?] to calculate the rate of divergence
of DNA (or protein) sequences from their common ancestor. The model is illustrated as a
transition diagram in figure ??, with the four letters representing the states of a particular site
in a DNA sequence, and all transition probabilities equal to 𝑎.

Figure 15.5: Transition diagram for a four-state molecular evolution model for one letter in a
DNA sequence. The mutation rate 𝑎 is the probability that the letter is replaced
by a different one over one generation. The transition probabilities between indi-
vidual letters are 𝑎/3 (not labeled).

Then the probability of any particular transition, say from T to C is 𝑎/3, while the probability
of not having a substitution is equal to 1 − 𝑎. This is known as the Jukes-Cantor model and it
predicts that the fraction of letters in a sequence at generation 𝑡+1 depends on the distribution
in generation 𝑡 as follows:

⎛⎜⎜⎜⎜
⎝

𝑃𝐴(𝑡 + 1)
𝑃𝐺(𝑡 + 1)
𝑃𝐶(𝑡 + 1)
𝑃𝑇 (𝑡 + 1)

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

1 − 𝑎 𝑎/3 𝑎/3 𝑎/3
𝑎/3 1 − 𝑎 𝑎/3 𝑎/3
𝑎/3 𝑎/3 1 − 𝑎 𝑎/3
𝑎/3 𝑎/3 𝑎/3 1 − 𝑎

⎞⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜
⎝

𝑃𝐴(𝑡)
𝑃𝐺(𝑡)
𝑃𝐶(𝑡)
𝑃𝑇 (𝑡)

⎞⎟⎟⎟⎟
⎠

281

This model is very simple: it only considers substitutions, although other mutations are pos-
sible, e.g. insertions and deletions, although they are typically more disruptive and thus more
rare, and it treats all substitutions as equally likely, which is not empirically true. The benefit
is that the number 𝑎 is the only parameter in this model, which represents the mutation rate
at each site per generation. This makes is easy to compute the eigenvectors and eigenvalues of
the model in general. It turns out that the four eigenvectors do not depend on the parameter
𝑎, only the eigenvalues do:

⎛⎜⎜⎜⎜
⎝

1/4
1/4
1/4
1/4

⎞⎟⎟⎟⎟
⎠

𝜆 = 1;
⎛⎜⎜⎜⎜
⎝

1/4
−1/4
1/4

−1/4

⎞⎟⎟⎟⎟
⎠

𝜆 = 1 − 4
3𝑎

⎛⎜⎜⎜⎜
⎝

1/4
−1/4
−1/4
1/4

⎞⎟⎟⎟⎟
⎠

𝜆 = 1 − 4
3𝑎;

⎛⎜⎜⎜⎜
⎝

1/4
−1/4
1/4

−1/4

⎞⎟⎟⎟⎟
⎠

𝜆 = 1 − 4
3𝑎

Notice two things: first, the first eigenvector is the equilibrium distribution and has the same
frequencies for all four bases. Second, the three eigenvectors with eigenvalues smaller than
1 have negative entries, so they cannot be probability distributions themselves (although as
linear combinations with the first one, they may be, depending on the coefficients.)

Computationally, this allows us to predict the time evolution of a distribution of bases in a
DNA sequence for any given initial distribution, by using repeated matrix multiplication as
above. Figure ?? shows the probability distribution of nucleotides based on the Jukes-Cantor
model starting with the nucleotide A for two different mutation rates, propagated for different
lengths of time. It is evident that for a faster substitution rate the approach to the equilibrium
distribution is faster. This demonstrates how the second-largest eigenvalue of the transition
matrix determines the speed of convergence to the equilibrium distribution, as we postulated
in section ??.

Thus, the Jukes-Cantor model provides a prediction of the time-dependent evolution of the
probability distribution of each letter, starting with an initial distribution. In reality, we would
like to answer the following question: given two DNA sequences in the present (e.g. from
different species), what is the length of time they spent evolving from a common ancestor?

15.4.1 time since divergence

To do this, we need to some preliminary work. The first step is to compute the probability that
a letter at a particular site remain unchanged after 𝑡 generations. Because all the nucleotides
are equivalent in the Jukes-Cantor model, it’s the same as finding the probability that a
nucleotide in state A remains in A after 𝑡 generations. As we saw in section ??, we can
calculate the frequency distribution after 𝑡 time steps by using the decomposition of the initial
probability vector ⃗𝑃 (0) into a weighted sum of the eigenvectors. We take ⃗𝑃0 = (1, 0, 0, 0) (the
initial state is A) and this can be written as a sum of the four eigenvectors of the matrix 𝑀 :

282

0 175 400 625 850

time (generations)

fr
ac

tio
n

of
 e

ac
h

nu
cl

eo
tid

e

0.
0

0.
4

0.
8

Figure 15.6: Evolution of probability vectors in the Jukes-Cantor model with bar graphs show-
ing proportion of letters A, G, T, C (red, green, blue, magenta): a) 1000 genera-
tions with mutation rate a = 0.001; b) 200 generations with substitution rate a
= 0.01.

0 30 65 105 150 195

time (generations)

fr
ac

tio
n

of
 e

ac
h

nu
cl

eo
tid

e

0.
0

0.
4

0.
8

Figure 15.7: Evolution of probability vectors in the Jukes-Cantor model with bar graphs show-
ing proportion of letters A, G, T, C (red, green, blue, magenta): a) 1000 genera-
tions with mutation rate a = 0.001; b) 200 generations with substitution rate a
= 0.01.

283

⎛⎜⎜⎜⎜
⎝

1
0
0
0

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

1/4
1/4
1/4
1/4

⎞⎟⎟⎟⎟
⎠

+
⎛⎜⎜⎜⎜
⎝

1/4
−1/4
1/4

−1/4

⎞⎟⎟⎟⎟
⎠

+
⎛⎜⎜⎜⎜
⎝

1/4
−1/4
−1/4
1/4

⎞⎟⎟⎟⎟
⎠

+
⎛⎜⎜⎜⎜
⎝

1/4
−1/4
1/4

−1/4

⎞⎟⎟⎟⎟
⎠

Therefore, the transition matrix 𝑀 can be applied to each eigenvector separately, and each
matrix multiplication is a multiplication by the appropriate eigenvalue. Thus,

𝑃(𝑡) = 𝑀 𝑡𝑃(0) =

= 1𝑡
⎛⎜⎜⎜⎜
⎝

1/4
1/4
1/4
1/4

⎞⎟⎟⎟⎟
⎠

+ (1 − 4
3𝑎)𝑡

⎛⎜⎜⎜⎜
⎝

⎛⎜⎜⎜⎜
⎝

1/4
−1/4
1/4

−1/4

⎞⎟⎟⎟⎟
⎠

+
⎛⎜⎜⎜⎜
⎝

1/4
−1/4
−1/4
1/4

⎞⎟⎟⎟⎟
⎠

+
⎛⎜⎜⎜⎜
⎝

1/4
−1/4
1/4

−1/4

⎞⎟⎟⎟⎟
⎠

⎞⎟⎟⎟⎟
⎠

The first element of 𝑃(𝑡) is the probability of a nucleotide remaining 𝐴 after 𝑡 generation, and
it is: 𝑃𝐴(𝑡) = 1/4+3/4(1− 4

3𝑎)𝑡. For 𝑡 = 0, the probability is 1, as it should be, and as 𝑡 → ∞,
𝑃𝐴(𝑡) → 1/4, since this is the equilibrium probability distribution. Note that the expression is
the same for all the other letters, so we have found the expression for any nucleotide remaining
the same after 𝑡 generations.
Now let us get to the question of calculating the time that two sequences have evolved from
each other. Denote by 𝑚 the fraction of sites in two aligned sequences with different letters,
and 𝑞 is the probability of a nucleotide remaining the same, which is the given by the expression
for 𝑃𝐴(𝑡). Thus 𝑚 = 1 − 𝑞 = 3/4 − 3/4(1 − 4

3𝑎)𝑡. This can be solved for 𝑡:

𝑡 = log(1 − 4
3𝑚)

log(1 − 4
3𝑎)

15.4.2 phylogenetic distance

However, if we do not know the mutation rate 𝑎, and until recently it was rarely known with
any precision, this formula is of limited practical use. Jukes and Cantor neatly finessed the
problem by calculating the phylogenetic distance between the two sequences, which is defined as
𝑑 = 𝑎𝑡, or the mean number of substitutions that occurred per nucleotide during 𝑡 generations,
with mutation rate 𝑎 (substitutions per nucleotide per generation). Note that this distance is
not directly measurable from the fraction of different nucleotides in the two sequences, because
it counts all substitutions, including those which reverse an earlier mutation, and cause the
sequence to revert to its initial letter.

284

Now, let us assume 𝑎 is small, as is usually the case; as you recall from section 3.1, for humans
the rate of substitutions per generation per nucleotide is about 10−8. By Taylor expansion
of the logarithm around 1, log(1 − 4

3𝑎) ≈ −4
3𝑎. Using the formula for 𝑡 from above with this

approximation, we find the Jukes-Cantor phylogenetic distance to be:

𝑑𝐽𝐶 = log(1 − 4
3𝑚)

−4
3𝑎 𝑎 = −3

4 log(1 − 4
3𝑚)

This formula has the correct behavior in the two limits: when 𝑚 = 0, 𝑑𝐽𝐶 = 0 (identical
sequences have zero distance), and when 𝑚 → 3/4, 𝑑𝐽𝐶 → ∞, since 3/4 is the maximum
possible fraction of differences under the Jukes-Cantor model. Thus, we have obtained an
analytic formula for the phylogenetic distance based on the fraction of differences between two
homologous sequences.

A useful discussion of the details of connecting the Jukes-Cantor distance to phylogenetic
distances can be found on the treethinkers blog [?], describing several possible adjustments
that can be made to the formula. It can then be used to calculate a distance matrix that
contains distances between all pairs from collection of sequences. There are algorithms that can
generate phylogenetic trees based on a distance matrix, which minimize the total phylogenetic
distance of all the branches. This is one approach that biologists use to infer evolutionary
relationships from molecular sequence data, but there are many others, including maximum
likelihood and parsimony models.

15.4.3 Kimura model

One can devise more sophisticated models of base substitution. There are two classes of
nucleotide bases: purines (A,G) and pyrimidines (C,T). One may consider the difference in
rates of transitions (substitutions within the classes) and transversions (substitutions of purines
by pyrimidines and vice versa). This is known as the Kimura model and can be written as
follows as Markov chain:

⎛⎜⎜⎜⎜
⎝

𝑃𝐴
𝑃𝐺
𝑃𝐶
𝑃𝑇

⎞⎟⎟⎟⎟
⎠𝑡+1

=
⎛⎜⎜⎜⎜
⎝

1 − 𝛽 − 𝛾 𝛽 𝛾/2 𝛾/2
𝛽 1 − 𝛽 − 𝛾 𝛾/2 𝛾/2

𝛾/2 𝛾/2 1 − 𝛽 − 𝛾 𝛽
𝛾/2 𝛾/2 𝛽 1 − 𝛽 − 𝛾

⎞⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜
⎝

𝑃𝐴
𝑃𝐺
𝑃𝐶
𝑃𝑇

⎞⎟⎟⎟⎟
⎠𝑡

where 𝛽 is the rate of transitions and 𝛾 is the rate of transversions per generation. This model
has two different parameters, and as those two rates are empirically different (transitions
occur more frequently, since the bases are more chemically similar) the model is more realistic.
Whether or not it is worth the additional complexity depends on the question at hand.

285

15.4.4 divergence of human and chimp genomes

The human genome sequence was reported in 2001 and the genome of our closest living inter-
species relative, the chimpanzee, was published in 2005 [?]. Comparison between the two
genomes has allowed us to peer into the evolutionary history of the two lineages. Although
our genomes are quite similar, several large genome changes separate us and chimps. One
particularly big difference is the number of chromosomes: human genome is organized into 23
chromosomes while chimps have 24. This suggests two options: either the common ancestor
had 23 chromosomes and one of them split in the chimpanzee lineage, or the common ancestor
has 24 and an two of them merged in the human lineage. Determining the complete sequences
has answered that questions decisively: the human chromosome 2 is a result of a fusion of
two ancestral chromosomes. This is supported by multiple observations, in particular that the
two halves of human chromosome 2 can be matched to contiguous sequences in two separate
chimp chromosomes, as well as the presence of telomere sequences, which form caps on the
ends of chromosomes, in the middle of human chromosome 2. The entire story of great ape
chromosomal is still in the process of being investigated, here is one recent study that examines
the history of gorilla and orangutan chromosomal modification as well [?].

Besides the large-scale changes, many point mutations have accumulated since the split of
the two lineages. Large portions of the two genomes can be directly aligned, and the the
differences measured as fractions of letters that do not match in a particular region. In the
original report on the chimp genome [?], the authors calculated the divergence (mean fraction
of different letters in an aligned sequence) to be 1.23%. The distribution of these divergences
is shown in figure ??. This information allows us to calculate the likely time since the split
of the two lineages to be about 6-7 million years. The model used to make that calculation
is more sophisticated than the simple Jukes-Cantor substitution model, and uses a maximum-
likelihood approach.

286

287

15.4.5 Discussion questions

The following questions refer to the study Initial sequence of the chimpanzee genome and
comparison with the human genome

1. Name some possible challenges in comparing genomes between two different species.

2. Speculate on the biological reasons for the disparities in the substitution rates in different
chromosomes and in the distal parts (closer to the end) compared to the proximal (closer
to the center).

3. What are the differences in the transposable elements (SINES and LINES) between the
two genomes? Are there any explanations offered for this observation?

4. Explain the meaning of the 𝐾𝐴/𝐾𝑆 ratio for studying the effect of natural selection.

288

https://www.nature.com/articles/nature04072
https://www.nature.com/articles/nature04072

References
Cohen, Joel E. 2004. “Mathematics Is Biology’s Next Microscope, Only Better; Biology Is

Mathematics’ Next Physics, Only Better.” PLoS Biol 2 (12): e439. https://doi.org/10.
1371/journal.pbio.0020439.

Denny, Mark, and Steven Gaines. 2002. Chance in Biology: Using Probability to Explore
Nature. Princeton: Princeton University Press.

Feller, William. n.d. An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd
Edition. 3rd edition. New York; London: Wiley.

Jungck, John R., Holly Gaff, and Anton E. Weisstein. 2010. “Mathematical Manipulative
Models: In Defense of ”Beanbag Biology”.” CBE Life Sci Educ 9 (3): 201–11. https:
//doi.org/10.1187/cbe.10-03-0040.

Smith, J. Maynard. 1968. Mathematical Ideas in Biology. London: Cambridge University
Press.

Strogatz, Steven H. 2001. Nonlinear Dynamics And Chaos: With Applications To Physics,
Biology, Chemistry, And Engineering. 1st ed. Westview Press.

289

https://doi.org/10.1371/journal.pbio.0020439
https://doi.org/10.1371/journal.pbio.0020439
https://doi.org/10.1187/cbe.10-03-0040
https://doi.org/10.1187/cbe.10-03-0040

	Preface
	A brief motivation of mathematical modeling
	Purpose of this book
	Organization of the book

	Arithmetic and variables
	Blood circulation and mathematical modeling
	Galen's theory of blood
	Mathematical testing of the theory

	Parameters and variables in models
	discrete state variables: genetics
	discrete state variables: population
	continuous state variables: concentration
	multiple variables in medicine
	Discussion questions

	Tutorial 1: First steps for coding
	Learning goals
	R Studio and Quarto
	Arithmetic in R
	Scientific notation
	What can go wrong
	Exercises

	Assigning variables
	Variable names
	Displaying variable values
	Changing variable values
	What can go wrong
	Exercises

	Functions and their graphs
	Dimensions of quantities
	Exercises

	Functions and their graphs
	linear and exponential functions
	Exercises
	rational and logistic functions
	Exercises:

	Rates of biochemical reactions
	Constant (zeroth-order) kinetics
	First-order kinetics
	Michaelis-Menten model of enzyme kinetics

	Tutorial 2: Vectors and plotting
	Learning goals
	Vector variables
	Assigning vectors and idexing
	subsetting or slicing vectors
	using vector variables for calculations
	What can go wrong
	Exercises

	Calculations and plotting with vectors
	using plot()
	using lines() or points()
	adding a legend to a plot
	using curve()
	What can go wrong
	Exercises

	Describing data sets
	Mutations and their rates
	Describing data sets
	central value of a data set
	Exercises
	spread of a data set
	Exercises:
	describing data sets in graphs
	Exercises

	Tutorial 3: Data frames and descriptive statistics
	Learning goals
	Working with data frames
	loading data from a file
	loading data from a package
	descriptive statistics
	What can go wrong
	Exercises

	Visualizing data sets
	Box plots
	Exercises

	Random variables and distributions
	Random variables and distributions
	definition of probability
	axioms of probability
	random variables
	expectation of random variables
	variance of random variables
	Exercises

	Examples of distributions
	uniform distribution
	binomial distribution
	Exercises
	testing for mutants

	Tutorial 4: Random number generators
	Learning goals
	Random number generators
	uniform discrete random numbers
	binomial random number generator
	Exercises

	Linear regression
	Linear relationship between two variables
	Linear least-squares fitting
	sum of squared errors
	best-fit slope and intercept
	Execises
	correlation and goodness of fit
	Exercises

	Linear regression using R
	Regression to the mean
	Discussion questions

	Tutorial 5: Linear regression
	Learning goals
	Best-fit parameters
	interpreting the output of linear regression
	plotting the residuals
	Exercises:

	Independence
	Contingency tables to summarize data
	Conditional probability
	Exercises

	Independence of events
	Exercises
	product rule

	Independence of variables

	Hypothesis testing
	Terminology and quality measures
	positives and negatives
	types of errors
	test quality measures
	Exercises
	rejecting the null hypothesis

	Chi-squared test
	Examples of data tables
	trisomy and pregnancy
	stop-and-frisk and race

	Tutorial 6: Data tables and Booleans
	Objectives
	Data tables and the chi-squared test
	matrices and data tables
	Chi-squared test
	generating a data table
	Exercises

	Logical values and calculations
	logical tests
	calculations using Boolean vectors
	logical operators: AND and OR
	Exercises:

	Prior knowledge and Bayesian thinking
	Prior knowledge
	Bayes' formula
	positive and negative predictive values
	Exercises

	Applications of Bayesian thinking
	when too much testing is bad
	reliability of scientific studies
	discussion questions

	Tutorial 7: Functions and sampling from data
	Objectives:
	Functions in R
	defining a function
	calling a function
	using a function to generate random numbers
	using replicate
	Exercises

	Selecting samples from data frames
	data frames are matrix arrays
	selecting some observations
	random sampling of observations

	Linear difference equations
	Discrete time population models
	static population
	exponential population growth
	population with births and deaths
	dimensions of birth and death rates
	linear demographic models

	Solutions of linear difference models
	simple linear models
	models with a constant term
	population growth and decline
	Exercises

	Tutorial 8: For loops and dynamic models
	Objectives:
	For loops and vectors
	components of for loops
	using vectors with loops
	using for loops for solving discrete-time dynamic models
	Exercises:

	Graphical analysis of ordinary differential equations
	Building differential equations
	from discrete time to continuous
	Exercises
	growth proportional to population size
	chemical kinetics
	building nonlinear ODEs

	Qualitative analysis of ODEs
	graphical analysis of the defining function
	fixed points and stability
	Outline of qualitative analysis of an ODE
	Exercises

	Functions in R
	defining a function
	calling a function
	using a function to solve a difference equation
	Exercises

	Modeling the spread of infectious disease spread
	Discussion

	Tutorial 9: numeric solutions of ODEs
	Objectives:
	Numeric solution of differential equations
	Plotting defining functions of ODEs
	Calling functions using strings (optional)

	Solutions of ordinary differential equations
	Solutions of ordinary differential equations
	separate and integrate method
	behavior of solutions of linear ODEs
	solutions of nonhomogeneous ODEs
	Exercises

	Numeric solutions and the Forward Euler method
	Exercises

	Forward Euler method in R
	implementation
	Exercises
	error analysis
	Exercises

	Applications of linear ODE models
	model of pharmacokinetics
	Discussion questions

	Markov models with discrete states
	Building Markov models
	Markov property
	transition matrices
	probability of a string of states
	Exercises

	Markov models of medical treatment
	Discussion questions

	Probability distributions of Markov chains
	Probability distribution vectors
	Markov chains

	matrix multiplication
	Exercises
	propagation of probability vectors
	Exercises

	Mutations and molecular evolution
	Discussion questions

	Tutorial 10: simulations of Markov models
	Objectives
	Simulating Markov transitions
	Exercises

	Matrix multiplication
	Exercises

	Barplots for histograms and arrays

	Stationary distributions of Markov chains
	History of Markov chains
	Stationary distributions
	Exercises

	Bioinformatics and Markov models

	Dynamics of Markov models
	Phylogenetic trees
	Eigenvalues and eigenvectors
	basic linear algebra
	calculation of eigenvalues on paper
	calculation of eigenvectors on paper
	Exercises
	rate of convergence

	Eigenvectors in R
	Molecular evolution
	time since divergence
	phylogenetic distance
	Kimura model
	divergence of human and chimp genomes
	Discussion questions

	References

